scholarly journals The phospholipase C/protein kinase C pathway is involved in cathepsin G-induced human platelet activation: comparison with thrombin

1996 ◽  
Vol 313 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Mustapha SI-TAHAR ◽  
Patricia RENESTO ◽  
Hervé FALET ◽  
Francine RENDU ◽  
Michel CHIGNARD

Cathepsin G, an enzyme released by stimulated polymorphonuclear neutrophils, and thrombin are two human proteinases which potently trigger platelet activation. Unlike thrombin, the mechanisms by which cathepsin G initiates platelet activation have yet to be elucidated. The involvement of the phospholipase C (PLC)/protein kinase C (PKC) pathway in cathepsin G-induced activation was investigated and compared with stimulation by thrombin. Exposure of 5-[14C]hydroxytryptamine-labelled platelets to cathepsin G, in the presence of acetylsalicylic acid and phosphocreatine/creatine kinase, induced platelet aggregation and degranulation in a concentration-dependent manner (0.1-3.0 μM). Time-course studies (0-180 s) comparing equivalent concentrations of cathepsin G (3 μM) and thrombin (0.5 unit/ml) resulted in very similar transient hydrolysis of phosphatidylinositol 4,5-bisphosphate and steady accumulation of phosphatidic acid. In addition cathepsin G, like thrombin, initiated the production of inositol phosphates. The neutrophil-derived proteinase also induced phosphorylation of both the myosin light chain and pleckstrin, a substrate for PKC, to levels similar to those observed in platelets challenged with thrombin. Inhibition of PKC by GF 109203X, a specific inhibitor, suppressed platelet aggregation and degranulation to the same extent for both proteinases. Using fura 2-loaded platelets, the rise in the cytosolic free Ca2+ concentration induced by cathepsin G was shown to result, as for thrombin, from both mobilization of internal stores and Ca2+ entry across the plasma membrane. These findings provide evidence that cathepsin G stimulates the PLC/PKC pathway as potently as does thrombin, independently of thromboxane A2 formation and ADP release, and that this pathway is required for platelet functional responses.

1993 ◽  
Vol 290 (2) ◽  
pp. 471-475 ◽  
Author(s):  
R A Blake ◽  
T R Walker ◽  
S P Watson

Vanadate ions in the presence of H2O2 (peroxovanadate) induce a marked increase in the degree of tyrosine phosphorylation of proteins in human platelets. This increase preceded the onset of platelet shape change and aggregation, and is associated with activation of phospholipase C and increased [32P]phosphorylation of proteins of 47 kDa, a substrate for protein kinase C, and 20 kDa, a substrate for both myosin light-chain kinase and protein kinase C. The non-selective inhibitor of protein kinases, staurosporine, inhibits the increase in tyrosine phosphorylation of nearly all proteins and inhibits completely all other functional responses, suggesting that these events may be linked. In support of this, peroxovanadate stimulates tyrosine phosphorylation of phospholipase C gamma 1, suggesting that this may underlie its mechanism of platelet activation. Staurosporine also inhibited activation of phospholipase C by collagen, suggesting that tyrosine phosphorylation has an important role in the early stages of collagen-induced platelet activation.


2008 ◽  
Vol 36 (03) ◽  
pp. 603-613 ◽  
Author(s):  
Yu-Min Yang ◽  
Xing-Xiang Wang ◽  
Jun-Zhu Chen ◽  
Shi-Jun Wang ◽  
Hu Hu ◽  
...  

Inappropriate platelet activation is the key point of thrombogenesis. The aim of the present study was to investigate the effects of resveratrol (RESV), a compound extracted from the Chinese medicinal herb Polygonum cuspidatum sieb et Zucc, on the platelet activation induced by adenosine diphosphate (ADP) and its possible mechanism. The percentage of platelet aggregation and surface P-selectin-positive platelets, and the activity of protein kinase C (PKC) of platelet were observed with platelet aggregometer, flow cytometry and phosphorimaging system, respectively. RESV at 25, 50 and 100 μM showed anti-platelet aggregation and inhibition of surface P-selectin-positive platelets in a concentration-dependent manner. RESV (50 μM) inhibited the activity of PKC in the membrane fraction of platelets and decreased the percentage of membrane associated PKC activity in total PKC activity. Moreover, DL-erythro-1,3-Dihydroxy-2-aminooctadecane, an elective protein kinase C inhibitor (PKCI), and RESV had additive effects of inhibiting the percentage of platelet aggregation and surface P-selectin-positive platelets. It is suggested that RESV may inhibit platelet aggregation, the percentage of surface P-selectin-positive platelets and subsequent thrombus formation. The mechanisms may be partly relative to the decrease of the activity of PKC of platelets.


1995 ◽  
Vol 309 (1) ◽  
pp. 99-104 ◽  
Author(s):  
D Dash ◽  
K Rao

Propranolol inhibits platelet secondary aggregation and secretion by mechanisms unrelated to its beta-adrenergic-blocking activity. We previously reported that a major effect of the drug is perturbation of the physical microenvironment of the human platelet membrane. To explore further the molecular mechanisms underlying propranolol-mediated platelet inhibition, we studied protein kinase C activity, estimated from the phosphorylation of the substrate protein pleckstrin, in propranolol-treated human platelets. The drug inhibited activation of the enzyme in thrombin-stimulated platelets but not in platelets stimulated with phorbol esters, indicating that its site of action might be upstream of protein kinase C. It also inhibited the activity of phospholipase C, determined from the extent of generation of inositol phosphates and phosphatidic acid, in platelets stimulated with thrombin as well as the non-hydrolysable GTP analogue guanosine 5′-[beta, gamma-imido]triphosphate in a dose-dependent manner. These data suggest that propranolol inhibits signal transduction in thrombin-stimulated platelets by interacting at the level of phospholipase C and exclude interaction of the drug with the downstream effector enzyme protein kinase C.


1990 ◽  
Vol 268 (2) ◽  
pp. 325-331 ◽  
Author(s):  
A Karniguian ◽  
F Grelac ◽  
S Levy-Toledano ◽  
Y J Legrand ◽  
F Rendu

This study analyses early biochemical events in collagen-induced platelet activation. An early metabolic event occurring during the lag phase was the activation of PtdIns(4,5)P2-specific phospholipase C. Phosphatidic acid (PtdOH) formation, phosphorylation of P43 and P20, thromboxane B2 (TXB2) synthesis and platelet secretion began after the lag phase, and were similarly time-dependent, except for TXB2 synthesis, which was delayed. Collagen induced extensive P43 phosphorylation, whereas P20 phosphorylation was weak and always lower than with thrombin. The dose-response curves of P43 phosphorylation and granule secretion were similar, and both reached a peak at 7.5 micrograms of collagen/ml, a dose which induced half-maximal PtdOH and TXB2 formation. Sphingosine, assumed to inhibit protein kinase C, inhibited P43 phosphorylation and secretion in parallel. However, sphingosine was not specific for protein kinase C, since a 15 microM concentration, which did not inhibit P43 phosphorylation, blocked TXB2 synthesis by 50%. Sphingosine did not affect PtdOH formation at all, even at 100 microM, suggesting that collagen itself induced this PtdOH formation, independently of TXB2 generation. The absence of external Ca2+ allowed the cleavage of polyphosphoinositides and the accumulation of InsP3 to occur, but impaired P43 phosphorylation, PtdOH and TXB2 formation, and secretion; these were only restored by adding 0.11 microM-Ca2+. In conclusion, stimulation of platelet membrane receptors for collagen initiates a PtdInsP2-specific phospholipase C activation, which is independent of external Ca2+, and might be the immediate receptor-linked response. A Ca2+ influx is indispensable to the triggering of subsequent platelet responses. This stimulation predominantly involves the protein kinase C pathway associated with secretion, and appears not to be mediated by TXB2, at least during its initial stage.


1994 ◽  
Vol 131 (5) ◽  
pp. 510-515 ◽  
Author(s):  
Osamu Kozawa ◽  
Haruhiko Tokuda ◽  
Atsushi Suzuki ◽  
Jun Kotoyori ◽  
Yoshiaki Ito ◽  
...  

Kozawa O, Tokuda H, Suzuki A, Kotoyori J, Ito Y, Oiso Y. Effect of glucocorticoid on prostaglandin F2α-induced prostaglandin E2 synthesis in osteoblast-like cells: inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2. Eur J Endocrinol 1994;131:510–15. ISSN 0804–4643 It is well known that osteoporosis is a common complication of patients with glucocorticoid excess. We showed previously that prostaglandin (PG) F2α stimulates the synthesis of PGE2, a potent bone resorbing agent, and that the activation of protein kinase C amplifies the PGF2α-induced PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like MC3T3-E1 cells. In the present study, we examined the effect of dexamethasone on PGE2 synthesis induced by PGF2α in MC3T3-E1 cells. The pretreatment with dexamethasone significantly inhibited the PGE2 synthesis in a dose-dependent manner in the range between 0.1 and 10 nmol/l in these cells. This effect of dexamethasone was dependent on the time of pretreatment up to 8 h. Dexamethasone also inhibited PGE2 synthesis induced by melittin, known as a phospholipase A2 activator. Furthermore, dexamethasone significantly inhibited the enhancement of PGF2α- or melittin-induced PGE2 synthesis by 12-O-tetradecanoylphorbol-13-acetate, known as a protein kinase C activator. In addition, dexamethasone significantly inhibited PGF2α-induced formation of inositol phosphates in a dose-dependent manner between 0.1 and 10 nmol/l in MC3T3-E1 cells. These results strongly suggest that glucocorticoid inhibits PGF2α-induced PGE2 synthesis through the inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2 in osteoblast-like cells. Osamu Kozawa, Department of Biochemistry, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03, Japan


1987 ◽  
Author(s):  
J A Ware ◽  
M Smith ◽  
E W Salzman

Platelet aggregation and secretion induced by phorbol ester (PMA) or diacylglycerol (DAG) are preceded by an increase in [Ca++] that is detected byaequorin, but not by quin2, fura-2, or indo-1, suggesting that these indicatorsreflect different aspects of Ca++ homeostasis, possibly different functional Ca++ pools. Addition of two conventional agonists in subthreold concentrations synergistically enhances the [Ca++] rise and aggregation.However, if PMA or DAG is the first agonist the subsequent quin2-indicated [Ca++] rise after thrombin is reduced.Whether aequorin-indicated [Ca++] is similarly affected is unknown. We studied gel-filtered platelets loaded with aequorin or a fluorophore and added PMA, DAG, thrombin or ADP, alone or in combination. Either PMA or DAG alone caused a concentration-dependent increase in [Ca++] detectable with aequorin but not with the fluorophores; simultaneous addition of thrombin or ADP with DAG or PMA produced a larger [Ca++] rise than either alone. However, addition of DAG or PMA as a first agonist reduced subsequent aequorin-indicated [Ca++] rises following thrombin or ADP in a concentration and time-dependent manner. Inhibition of ADP or thrombin-induced [Ca++] rise was not always accompanied by inhibition of aggregation or secretion. Combination of subthreshold concentrations of ADP and thrombin produced an enhanced [Ca++] rise and aggregation. However, this synergistic effect was inhibited by preincubation with DAG or PMA. Neither this effect nor DAG-induced [Ca++] rise was inhibited by the protein kinase C inhibitor H-7. In genera^ preincubation of platelets with an agonist enhances Ca rise and aggregation in response to a second agonist; in contrasl protein kinase C activators, which themselves elevate [Ca++] as shown by aequorin, inhibit aequorin-indicated Ca rises after ADP or thrombin, and limit synergism between these two agonists.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2704-2713 ◽  
Author(s):  
R Vezza ◽  
R Roberti ◽  
GG Nenci ◽  
P Gresele

Abstract Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.


1989 ◽  
Vol 263 (2) ◽  
pp. 377-385 ◽  
Author(s):  
W Siess ◽  
E G Lapetina

Adrenaline or UK 14304 (a specific alpha 2-adrenoceptor agonist) and phorbol ester (phorbol 12,13-dibutyrate; PdBu) or bioactive diacylglycerols (sn-1,2-dioctanoylglycerol; DiC8) synergistically induced platelet aggregation and ATP secretion. The effect on aggregation was more pronounced than the effect on secretion, and it was observed in aspirinized, platelet-rich plasma or suspensions of washed aspirinized platelets containing ADP scavengers. No prior shape change was found. In the presence of adrenaline, DiC8 induced reversible aggregation and PdBu evoked irreversible aggregation that correlated with the different kinetics of DiC8- and PdBu-induced protein kinase C activation. Adrenaline and UK 14304 did not induce or enhance phosphorylation induced by DiC8 or PdBu of myosin light chain (20 kDa), the substrate of protein kinase C (47 kDa), or a 38 kDa protein. Immunoprecipitation studies using a Gcommon alpha antiserum or a Gi alpha antiserum showed that Gi alpha is not phosphorylated after exposure of platelets to PdBu or PdBu plus adrenaline. Adrenaline, PdBu or adrenaline plus PdBu did not cause stimulation of phospholipase C as reflected in production of [32P]phosphatidic acid. Adrenaline caused a small increase of Ca2+ in the platelet cytosol of platelets loaded with Indo-1; this effect was also observed in the absence of extracellular Ca2+. However, under conditions of maximal aggregation induced by adrenaline plus PdBu, no increase of cytosolic Ca2+ was observed. Platelet aggregation induced by PdBu plus adrenaline was not inhibited by a high intracellular concentration of the calcium chelator Quin-2. These experiments indicate that alpha 2-adrenoceptor agonists, known to interact with Gi, and protein kinase C activators synergistically induced platelet aggregation through a novel mechanism. The synergism occurs distally to Gi protein activation and protein kinase C-dependent protein phosphorylation and does not involve phospholipase C activation or Ca2+ mobilization.


2009 ◽  
Vol 29 (6) ◽  
pp. 477-487
Author(s):  
Pochuen Shieh ◽  
Chih-Hung Lee ◽  
Ng Ling Yi ◽  
Chung-Ren Jan

The effect of the cardiovascular drug carvedilol on cytosolic free Ca2+ concentrations ([Ca 2+]i) and viability was examined in Statens Seruminstitut rabbit cornea (SIRC) corneal epithelial cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] (WST-1), respectively. Carvedilol at concentrations between 1 and 30 μM increased [Ca 2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Carvedilol induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was inhibited by suppression of protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca 2+ pump inhibitor), carvedilol-induced [Ca2+]i rise was reduced; and conversely, carvedilol pretreatment inhibited a major part of thapsigargin-induced [Ca 2+]i rise. Addition of the phospholipase C inhibitor 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U73122; 2 μM) did not change carvedilol-induced [Ca2+]i rise. At concentrations between 5 and 70 μM, carvedilol killed cells in a concentration-dependent manner. The cytotoxic effect of 20 μM carvedilol was not reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Apoptosis was induced by 5—70 μM carvedilol. Collectively, in SIRC corneal epithelial cells, carvedilol-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca 2+ influx via protein kinase C-regulated Ca2+ channels. Carvedilol-caused cytotoxicity was mediated by Ca2+-independent apoptosis in a concentration-dependent manner.


FEBS Letters ◽  
1999 ◽  
Vol 460 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Fabio M Pulcinelli ◽  
Maria Teresa Ciampa ◽  
Mara Favilla ◽  
Pasquale Pignatelli ◽  
Silvia Riondino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document