scholarly journals Effect of propranolol on platelet signal transduction

1995 ◽  
Vol 309 (1) ◽  
pp. 99-104 ◽  
Author(s):  
D Dash ◽  
K Rao

Propranolol inhibits platelet secondary aggregation and secretion by mechanisms unrelated to its beta-adrenergic-blocking activity. We previously reported that a major effect of the drug is perturbation of the physical microenvironment of the human platelet membrane. To explore further the molecular mechanisms underlying propranolol-mediated platelet inhibition, we studied protein kinase C activity, estimated from the phosphorylation of the substrate protein pleckstrin, in propranolol-treated human platelets. The drug inhibited activation of the enzyme in thrombin-stimulated platelets but not in platelets stimulated with phorbol esters, indicating that its site of action might be upstream of protein kinase C. It also inhibited the activity of phospholipase C, determined from the extent of generation of inositol phosphates and phosphatidic acid, in platelets stimulated with thrombin as well as the non-hydrolysable GTP analogue guanosine 5′-[beta, gamma-imido]triphosphate in a dose-dependent manner. These data suggest that propranolol inhibits signal transduction in thrombin-stimulated platelets by interacting at the level of phospholipase C and exclude interaction of the drug with the downstream effector enzyme protein kinase C.

1996 ◽  
Vol 313 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Mustapha SI-TAHAR ◽  
Patricia RENESTO ◽  
Hervé FALET ◽  
Francine RENDU ◽  
Michel CHIGNARD

Cathepsin G, an enzyme released by stimulated polymorphonuclear neutrophils, and thrombin are two human proteinases which potently trigger platelet activation. Unlike thrombin, the mechanisms by which cathepsin G initiates platelet activation have yet to be elucidated. The involvement of the phospholipase C (PLC)/protein kinase C (PKC) pathway in cathepsin G-induced activation was investigated and compared with stimulation by thrombin. Exposure of 5-[14C]hydroxytryptamine-labelled platelets to cathepsin G, in the presence of acetylsalicylic acid and phosphocreatine/creatine kinase, induced platelet aggregation and degranulation in a concentration-dependent manner (0.1-3.0 μM). Time-course studies (0-180 s) comparing equivalent concentrations of cathepsin G (3 μM) and thrombin (0.5 unit/ml) resulted in very similar transient hydrolysis of phosphatidylinositol 4,5-bisphosphate and steady accumulation of phosphatidic acid. In addition cathepsin G, like thrombin, initiated the production of inositol phosphates. The neutrophil-derived proteinase also induced phosphorylation of both the myosin light chain and pleckstrin, a substrate for PKC, to levels similar to those observed in platelets challenged with thrombin. Inhibition of PKC by GF 109203X, a specific inhibitor, suppressed platelet aggregation and degranulation to the same extent for both proteinases. Using fura 2-loaded platelets, the rise in the cytosolic free Ca2+ concentration induced by cathepsin G was shown to result, as for thrombin, from both mobilization of internal stores and Ca2+ entry across the plasma membrane. These findings provide evidence that cathepsin G stimulates the PLC/PKC pathway as potently as does thrombin, independently of thromboxane A2 formation and ADP release, and that this pathway is required for platelet functional responses.


1988 ◽  
Vol 251 (3) ◽  
pp. 865-871 ◽  
Author(s):  
J B Hoek ◽  
R Rubin ◽  
A P Thomas

Ethanol causes a transient activation of the phosphoinositide-specific phospholipase C in intact hepatocytes and mimics the action of receptor-mediated agonists [Hoek, Thomas, Rubin & Rubin (1987) J. Biol. Chem. 262, 682-691]. Preincubation of the hepatocytes with phorbol esters which activate protein kinase C prevented this effect of ethanol: phorbol ester treatment inhibited the ethanol-induced phosphorylase activation, the increase in intracellular free Ca2+ concentrations measured in quin 2-loaded hepatocytes, and the changes in concentrations of inositol phosphates, phosphoinositides and phosphatidic acid. Several lines of evidence indicate that these effects were mediated by protein kinase C. Phorbol esters acted in a concentration range where they activate protein kinase C; phorbol esters that do not activate protein kinase C were not effective in inhibiting the effects of ethanol. The permeant diacylglycerol oleoyl-acetylglycerol also inhibited the effects of ethanol, but other diacylglycerols were not effective in the intact cells. The inhibition of ethanol-induced Ca2+ mobilization by phorbol esters was prevented by preincubating the cells with the protein kinase C inhibitors 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H7) and sphingosine. H7 also enhanced the Ca2+ mobilization induced by ethanol in cells that were not pretreated with phorbol esters, indicating that the transient nature of the ethanol-induced Ca2+ mobilization may be due to an activation of protein kinase C caused by the accumulation of diacylglycerol. These data support a model whereby ethanol activates the phosphoinositide-specific phospholipase C, possibly by affecting receptor-G-protein-phospholipase C interactions in the membrane.


2000 ◽  
Vol 78 (6) ◽  
pp. 715-723 ◽  
Author(s):  
John P Williams ◽  
Margaret A McKenna ◽  
Allyn M Thames III ◽  
Jay M McDonald

Tamoxifen inhibits bone resorption by disrupting calmodulin-dependent processes. Since tamoxifen inhibits protein kinase C in other cells, we compared the effects of tamoxifen and the phorbol ester, phorbol myristate acetate, on osteoclast activity. Phorbol esters stimulate bone resorption and calmodulin levels four-fold (k0.5 = 0.1–0.3 µM). In contrast, tamoxifen inhibited osteoclast activity ~60% with an IC50 of 1.5 µM, had no apparent effect on protein kinase C activity in whole-cell lysates, and reduced protein kinase Cα recovered by immunoprecipitation 75%. Phorbol esters stimulated resorption in a time-dependent manner that was closely correlated with a similar-fold increase in calmodulin. Protein kinase Cα, β, δ, ε, and ζ were all down-regulated in response to phorbol ester treatment. Tamoxifen and trifluoperazine inhibited PMA-dependent increases in bone resorption and calmodulin by 85 ± 10%. Down-regulation of protein kinase C isoforms by phorbol esters suggests that the observed increases in bone resorption and calmodulin levels are most likely due to a mechanism independent of protein kinase C and dependent on calmodulin. In conclusion, the data suggest that protein kinase C negatively regulates calmodulin expression and support the hypothesis that the effects of both phorbol esters and tamoxifen on osteoclast activity is mediated by calmodulin.Key words: osteoclast, calmodulin, tamoxifen, osteoporosis, protein kinase C.


1994 ◽  
Vol 131 (5) ◽  
pp. 510-515 ◽  
Author(s):  
Osamu Kozawa ◽  
Haruhiko Tokuda ◽  
Atsushi Suzuki ◽  
Jun Kotoyori ◽  
Yoshiaki Ito ◽  
...  

Kozawa O, Tokuda H, Suzuki A, Kotoyori J, Ito Y, Oiso Y. Effect of glucocorticoid on prostaglandin F2α-induced prostaglandin E2 synthesis in osteoblast-like cells: inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2. Eur J Endocrinol 1994;131:510–15. ISSN 0804–4643 It is well known that osteoporosis is a common complication of patients with glucocorticoid excess. We showed previously that prostaglandin (PG) F2α stimulates the synthesis of PGE2, a potent bone resorbing agent, and that the activation of protein kinase C amplifies the PGF2α-induced PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like MC3T3-E1 cells. In the present study, we examined the effect of dexamethasone on PGE2 synthesis induced by PGF2α in MC3T3-E1 cells. The pretreatment with dexamethasone significantly inhibited the PGE2 synthesis in a dose-dependent manner in the range between 0.1 and 10 nmol/l in these cells. This effect of dexamethasone was dependent on the time of pretreatment up to 8 h. Dexamethasone also inhibited PGE2 synthesis induced by melittin, known as a phospholipase A2 activator. Furthermore, dexamethasone significantly inhibited the enhancement of PGF2α- or melittin-induced PGE2 synthesis by 12-O-tetradecanoylphorbol-13-acetate, known as a protein kinase C activator. In addition, dexamethasone significantly inhibited PGF2α-induced formation of inositol phosphates in a dose-dependent manner between 0.1 and 10 nmol/l in MC3T3-E1 cells. These results strongly suggest that glucocorticoid inhibits PGF2α-induced PGE2 synthesis through the inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2 in osteoblast-like cells. Osamu Kozawa, Department of Biochemistry, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03, Japan


1989 ◽  
Vol 258 (1) ◽  
pp. 177-185 ◽  
Author(s):  
D M Blakeley ◽  
A N Corps ◽  
K D Brown

Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.


2001 ◽  
Vol 281 (1) ◽  
pp. C17-C23 ◽  
Author(s):  
Sheng-Jun Pan ◽  
Mingyan Zhu ◽  
Mohan K. Raizada ◽  
Colin Sumners ◽  
Craig H. Gelband

It was previously determined that ANG II and phorbol esters inhibit Kv current in neurons cultured from newborn rat hypothalamus and brain stem in a protein kinase C (PKC)- and Ca2+-dependent manner. Here, we have further defined this signaling pathway by investigating the roles of “physiological” activators of PKC and different PKC isozymes. The cell-permeable PKC activators, diacylglycerol (DAG) analogs 1,2-dioctanoyl- sn-glycerol (1 μmol/l, n = 7) and 1-oleoyl-2-acetyl- sn-glycerol (1 μmol/l, n = 6), mimicked the effect of ANG II and inhibited Kv current. These effects were abolished by the PKC inhibitor chelerythrine (1 μmol/l, n = 5) or by chelation of internal Ca2+ ( n = 8). PKC antisense (AS) oligodeoxynucleotides (2 μmol/l) against Ca2+-dependent PKC isoforms were applied to the neurons to manipulate the endogenous levels of PKC. PKC-α-AS ( n = 4) treatment abolished the inhibitory effects of ANG II and 1-oleoyl-2-acetyl- sn-glycerol on Kv current, whereas PKC-β-AS ( n = 4) and PKC-γ-AS ( n = 4) did not. These results suggest that the angiotensin type 1 receptor-mediated effects of ANG II on neuronal Kv current involve activation of PKC-α.


1989 ◽  
Vol 67 (8) ◽  
pp. 962-967 ◽  
Author(s):  
Peter C. K. Leung ◽  
Jian Wang ◽  
Kenneth G. Baimbridge

The initial step in the signal transduction of luteinizing hormone-releasing hormone (LHRH) in rat ovarian cells is the hydrolysis of membrane polyphosphoinositides into inositol phosphates and 1,2-diacylglycerol. The former compounds, especially inositol 1,4,5-triphosphate, are known to cause the release of calcium from intracellular stores, while diacylglycerol is a potent activator of protein kinase C. LHRH causes a rapid and transient increase in intracellular concentrations of free calcium ions, by approximately 4.5-fold, in the majority of granulosa cells as assessed by fura-2 microspectrofluorimetry. Like LHRH, a calcium ionophore (A23187) and activators of protein kinase C attenuate the steroidogenic response of the cells to follicle-stimulating hormone, but enhance the formation of gonadotropin-induced prostaglandin formation. These results support the concept that stimulation of polyphosphoinositide hydrolysis is intimitely involved in the direct action of LHRH at the level of the ovary.Key words: signal transduction, calcium, protein kinase C, ovary, steroid hormones.


1992 ◽  
Vol 12 (3) ◽  
pp. 1304-1311 ◽  
Author(s):  
H Greif ◽  
J Ben-Chaim ◽  
T Shimon ◽  
E Bechor ◽  
H Eldar ◽  
...  

The tumor promoters phorbol esters are thought to induce changes in cell growth and gene expression by direct activation of protein kinase C (PKC). However, the molecular mechanisms by which PKC molecules transduce signals into the cell nucleus are unknown. In this study, we provide evidence for a direct target for phorbol esters in the nucleus. We demonstrate that the new PKC-related family member, PKC-L, recently isolated by us, is expressed specifically in the cell nucleus. Localization of PKC-L in the cell nucleus is shown both by immunofluorescence staining and by subcellular fractionation experiments of several human cell lines, including the human epidermoid carcinoma line A431. Treatment of these cells by phorbol esters does not induce the down-regulation of PKC-L, in contrast to their effect on classical PKC family members. This is the only PKC isoenzyme described so far that resides permanently and specifically in the cell nucleus. PKC-L may function as an important link in tumor promoting, e.g., as a nuclear regulator of gene expression that changes the phosphorylation state of transcriptional components such as the AP-1 complex.


2009 ◽  
Vol 29 (6) ◽  
pp. 477-487
Author(s):  
Pochuen Shieh ◽  
Chih-Hung Lee ◽  
Ng Ling Yi ◽  
Chung-Ren Jan

The effect of the cardiovascular drug carvedilol on cytosolic free Ca2+ concentrations ([Ca 2+]i) and viability was examined in Statens Seruminstitut rabbit cornea (SIRC) corneal epithelial cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] (WST-1), respectively. Carvedilol at concentrations between 1 and 30 μM increased [Ca 2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Carvedilol induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was inhibited by suppression of protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca 2+ pump inhibitor), carvedilol-induced [Ca2+]i rise was reduced; and conversely, carvedilol pretreatment inhibited a major part of thapsigargin-induced [Ca 2+]i rise. Addition of the phospholipase C inhibitor 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U73122; 2 μM) did not change carvedilol-induced [Ca2+]i rise. At concentrations between 5 and 70 μM, carvedilol killed cells in a concentration-dependent manner. The cytotoxic effect of 20 μM carvedilol was not reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Apoptosis was induced by 5—70 μM carvedilol. Collectively, in SIRC corneal epithelial cells, carvedilol-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca 2+ influx via protein kinase C-regulated Ca2+ channels. Carvedilol-caused cytotoxicity was mediated by Ca2+-independent apoptosis in a concentration-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document