scholarly journals Purification and characterization of a tetrameric α-macroglobulin proteinase inhibitor from the gastropod mollusc Biomphalaria glabrata

1996 ◽  
Vol 316 (3) ◽  
pp. 893-900 ◽  
Author(s):  
Randall C. BENDER ◽  
Christopher J. BAYNE

The α-macroglobulin proteinase inhibitors (αMs) are a family of proteins with the unique ability to inhibit a broad spectrum of proteinases. Whereas monomeric, dimeric and tetrameric αMs have been identified in vertebrates, all invertebrate αMs characterized so far have been dimeric. This paper reports the isolation and characterization of a tetrameric αM from the tropical planorbid snail Biomphalaria glabrata. The sequence of 18 amino acids at the N-terminus indicates homology with other αMs. The subunit mass of approx. 200 kDa was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and SDS/PAGE. The quaternary structure was determined by sedimentation equilibrium centrifugation and native pore-limit electrophoresis. Evidence for a thioester is provided by the fact that methylamine treatment prevents the autolytic cleavage of the snail αM subunit and results in the release of 4 mol of thiols per mol of snail αM. The snail αM inhibited the serine proteinase trypsin, the cysteine proteinase bromelain and the metalloproteinase thermolysin. The spectrum of proteinases inhibited, together with the demonstration of steric protection of the proteinase active site and a ‘slow to fast’ conformational change after reacting with trypsin, all suggest that the inhibitory mechanism of the snail αM is similar to the ‘trap mechanism’ of human α2-macroglobulin.

2020 ◽  
Vol 8 (2) ◽  
pp. 204 ◽  
Author(s):  
Veronika Vrbovská ◽  
Ivo Sedláček ◽  
Michal Zeman ◽  
Pavel Švec ◽  
Vojtěch Kovařovic ◽  
...  

Members of the genus Staphylococcus are widespread in nature and occupy a variety of niches, however, staphylococcal colonization of animals in the Antarctic environment has not been adequately studied. Here, we describe the first isolation and characterization of two Staphylococcus intermedius group (SIG) members, Staphylococcus delphini and Staphylococcus pseudintermedius, in Antarctic wildlife. Staphylococcus delphini were found exclusively in Adélie penguins. The report of S. pseudintermedius from Weddell seals confirmed its occurrence in all families of the suborder Caniformia. Partial RNA polymerase beta-subunit (rpoB) gene sequencing, repetitive PCR fingerprinting with the (GTG)5 primer, and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry gave consistent identification results and proved to be suitable for identifying SIG members. Comparative genomics of S. delphini isolates revealed variable genomic elements, including new prophages, a novel phage-inducible chromosomal island, and numerous putative virulence factors. Surface and extracellular protein distribution were compared between genomes and showed strain-specific profiles. The pathogenic potential of S. delphini was enhanced by a novel type of exfoliative toxin, trypsin-like serine protease cluster, and enterotoxin C. Detailed analysis of phenotypic characteristics performed on six Antarctic isolates of S. delphini and eight reference strains from different animal sources enabled us to emend the species description of S. delphini.


1996 ◽  
Vol 13 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Giulia Sparro ◽  
Salvatore Bonaiuto ◽  
Gabriella Galoenzi ◽  
Anna Maria Eleuteri ◽  
Mauro Angeletti ◽  
...  

A comparative study of the levels of acid-stable proteinase inhibitors (kallikrein and trypsin inhibitors) in the urine of healthy and Alzheimer subjects, of both sexes, has been performed. A preliminary characterization of the purified inhibitors indicates that the urinary antitryptic activity is accounted for by the presence of the well known Urinary Trypsin Inhibitor (UTI) while an apparently new molecule appears to be responsible for the anti kallikrein activity. The urinary levels of kallikrein inhibitors are very similar in healthy and sick subjects while the levels of trypsin inhibitors appear significatively increased in Alzheimer subjects of both sexes. The data presented here support the hypothesis that unpaired proteolytic processes could be involved in the pathogenesis of Alzheimer's disease and suggest that the levels of urinary acid-stable inhibitors may prove to be useful markers of the disease.


1984 ◽  
Vol 218 (3) ◽  
pp. 953-959 ◽  
Author(s):  
L Kuehn ◽  
M Rutschmann ◽  
B Dahlmann ◽  
H Reinauer

Three different serine proteinase inhibitors were isolated from rat serum and purified to apparent homogeneity. One of the inhibitors appears to be homologous to alpha 1-proteinase inhibitor isolated from man and other species, but the other two, designated rat proteinase inhibitor I and rat proteinase inhibitor II, seem to have no human counterpart. alpha 1-Proteinase inhibitor (Mr 55000) inhibits trypsin, chymotrypsin and elastase, the three serine proteinases tested. Rat proteinase inhibitor I (Mr 66000) is active towards trypsin and chymotrypsin, but is inactive towards elastase. Rat proteinase inhibitor II (Mr 65000) is an effective inhibitor of trypsin only. Their contributions to the trypsin-inhibitory capacity of rat serum are about 68, 14 and 18% for alpha 1-proteinase inhibitor, rat proteinase inhibitor I and rat proteinase inhibitor II respectively.


1989 ◽  
Vol 263 (2) ◽  
pp. 439-444 ◽  
Author(s):  
M V Laycock ◽  
T Hirama ◽  
S Hasnain ◽  
D Watson ◽  
A C Storer

A new cysteine proteinase was isolated from the digestive juice of the American lobster (Homarus americanus). The enzyme was purified by a combination of affinity and ion-exchange chromatography and gel filtration. The cysteine proteinase accounted for 80% of the proteolytic activity in the lumen of the hepatopancreas. The most potent heavy-metal inhibitors were Hg, Cu, and Ag ions. Inhibition by organic proteinase inhibitors, including E-64 [L-trans-epoxysuccinyl-leucylamido-(4-guanidino)butane] and activation of the enzyme by 2-mercaptoethanol and dithiothreitol are characteristic of cysteine proteinases. Several similarities to papain are noted and include the N-terminal sequence, of which 22 of the first 28 amino acids are identical. Some notable differences are the higher Mr of 28,000 compared with 23,350 for papain, and the low isoelectric point (pI 4.5) of the lobster enzyme. The effects of pH and temperature on catalytic activity of the lobster proteinase were studied with benzyloxycarbonylalanine p-nitrophenyl ester as the substrate. The kcat./Km value was effectively temperature-independent between 10 and 60 degrees C. The pH-activity profile for the lobster enzyme revealed four apparent protonation states, of which only two are active.


Sign in / Sign up

Export Citation Format

Share Document