scholarly journals The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat

1996 ◽  
Vol 318 (3) ◽  
pp. 767-770 ◽  
Author(s):  
Lesley DRYNAN ◽  
Patti A. QUANT ◽  
Victor A. ZAMMIT

The relationships between the increase in blood ketone-body concentrations and several parameters that can potentially influence the rate of hepatic fatty acid oxidation were studied during progressive starvation (up to 24 h) in the rat in order to discover whether the sensitivity of mitochondrial overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA plays an important part in determining the intrahepatic potential for fatty acid oxidation during the onset of ketogenic conditions. A rapid increase in blood ketone-body concentration occurred between 12 and 16 h of starvation, several hours after the marked fall in hepatic malonyl-CoA and in serum insulin concentrations and doubling of plasma non-esterfied fatty acid (NEFA) concentration. Consequently, both the changes in hepatic malonyl-CoA and serum NEFA preceded the increase in blood ketone-body concentration by several hours. The maximal activity of CPT I increased gradually throughout the 24 h period of starvation, but the increases did not become significant before 18 h of starvation. By contrast, the sensitivity of CPT I to malonyl-CoA and the increase in blood ketone-body concentration followed an identical time course, demonstrating the central importance of this parameter in determining the ketogenic response of the liver to the onset of the starved state.

1993 ◽  
Vol 291 (1) ◽  
pp. 241-246 ◽  
Author(s):  
A M B Moir ◽  
V A Zammit

The effects of the ingestion of a meal on the partitioning of hepatic fatty acids between oxidation and esterification were studied in vivo for meal-fed rats. The time course for the reversal of the starved state was extremely rapid and the process was complete within 2 h, in marked contrast with the reversal of the effects of starvation in rats fed ad libitum [A. M. B. Moir and V. A. Zammit (1993) Biochem. J. 289, 49-55]. This rapid reversal occurred in spite of the fact that, in the liver of the meal-fed animals before feeding, a similar degree of partitioning of fatty acids in favour of oxidation was observed as in 24 h-starved rats (previously fed ad libitum). This suggested that the lower degree of ketonaemia observed in meal-fed rats before a meal is not due to the inability of acylcarnitine formation to compete successfully with esterification of fatty acids to the glycerol moiety. Investigation of the possible mechanisms that could contribute towards the rapid switching-off of fatty acid oxidation revealed that this was correlated with a very rapid rise and overshoot in hepatic malonyl-CoA concentration, but not with any change in the activity, or sensitivity to malonyl-CoA, of the mitochondrial overt carnitine palmitoyltransferase (CPT I). The role of these two parameters in the reversal of fasting-induced hepatic fatty acid oxidation was thus the inverse of that observed previously for refed 24 h-starved rats. The rapid increase in [malonyl-CoA] was accompanied by an immediate and complete reversion of the kinetic characteristics (Ka for citrate, expressed/total activity ratio) of acetyl-CoA carboxylase to those found in the post-meal animals, again in contrast with the time course observed in refed 24 h-starved rats [A. M. B. Moir and V. A. Zammit (1990) Biochem. J. 272, 511-517]. The rapidity with which these changes occurred was specific to the partitioning of acyl-CoA; the meal-induced diversion of glycerolipids towards phospholipid synthesis and the acute inhibition of the fractional rate of triacylglycerol secretion occurred with very similar time courses to those observed upon refeeding of 24 h-starved rats. The results confirm the central role played by differences in the dynamics of changes in hepatic malonyl-CoA concentration, and CPT I sensitivity to it, in determining the route through which ingested glucose is converted into hepatic glycogen upon refeeding of starved rats which had previously been meal-fed or fed ad libitum.


1990 ◽  
Vol 269 (2) ◽  
pp. 409-415 ◽  
Author(s):  
C Prip-Buus ◽  
J P Pegorier ◽  
P H Duee ◽  
C Kohl ◽  
J Girard

The temporal changes in oleate oxidation, lipogenesis, malonyl-CoA concentration and sensitivity of carnitine palmitoyltransferase I (CPT 1) to malonyl-CoA inhibition were studied in isolated rabbit hepatocytes and mitochondria as a function of time after birth of the animal or time in culture after exposure to glucagon, cyclic AMP or insulin. (1) Oleate oxidation was very low during the first 6 h after birth, whereas lipogenesis rate and malonyl-CoA concentration decreased rapidly during this period to reach levels as low as those found in 24-h-old newborns that show active oleate oxidation. (2) The changes in the activity of CPT I and the IC50 (concn. causing 50% inhibition) for malonyl-CoA paralleled those of oleate oxidation. (3) In cultured fetal hepatocytes, the addition of glucagon or cyclic AMP reproduced the changes that occur spontaneously after birth. A 12 h exposure to glucagon or cyclic AMP was sufficient to inhibit lipogenesis totally and to cause a decrease in malonyl-CoA concentration, but a 24 h exposure was required to induce oleate oxidation. (4) The induction of oleate oxidation by glucagon or cyclic AMP is triggered by the fall in the malonyl-CoA sensitivity of CPT I. (5) In cultured hepatocytes from 24 h-old newborns, the addition of insulin inhibits no more than 30% of the high oleate oxidation, whereas it stimulates lipogenesis and increases malonyl-CoA concentration by 4-fold more than in fetal cells (no oleate oxidation). This poor effect of insulin on oleate oxidation seems to be due to the inability of the hormone to increase the sensitivity of CPT I sufficiently. Altogether, these results suggest that the malonyl-CoA sensitivity of CPT I is the major site of regulation during the induction of fatty acid oxidation in the fetal rabbit liver.


1990 ◽  
Vol 259 (2) ◽  
pp. E266-E271 ◽  
Author(s):  
W. W. Winder ◽  
J. Arogyasami ◽  
I. M. Elayan ◽  
D. Cartmill

Malonyl-CoA is a potent inhibitor of carnitine palmitoyltransferase I (CPT-I), the rate-limiting enzyme for fatty acid oxidation in mitochondria from liver of fed rats. Malonyl-CoA has also been demonstrated to inhibit skeletal muscle CPT-I. This study was designed to determine the rate of decline in malonyl-CoA in muscle during the course of a prolonged exercise bout. Adult male rats were anesthetized (pentobarbital sodium, intravenously) at rest or after running for 5, 10, 20, 30, 60, or 120 min on a treadmill (21 m/min, 15% grade). Malonyl-CoA was then quantitated in the soleus (type I fibers) and in the superficial white (type IIB) and deep red (type IIA) regions of the quadriceps. Malonyl-CoA decreased in red quadriceps from 2.8 +/- 0.2 to 1.4 +/- 0.2 pmol/mg after 5 min and to 0.9 +/- 0.1 pmol/mg after 20 min of exercise. The concentration of malonyl-CoA remained at this level for the duration of the exercise bout (120 min). In white quadriceps, resting values of malonyl-CoA were lower than in red quadriceps, and a significant decline was not observed until 30 min of exercise. A significant decrease in the soleus was observed after 20 min of exercise. This decline in muscle malonyl-CoA may be an important signal for allowing increased fatty acid oxidation during long-term exercise.


1988 ◽  
Vol 252 (2) ◽  
pp. 409-414 ◽  
Author(s):  
P S Foxworthy ◽  
P I Eacho

Recent studies suggest that the induction of peroxisomal beta-oxidation in rodents may represent an adaptive response to disturbances in hepatic lipid metabolism. The following studies were done to determine the effects of 2-hydroxy-3-propyl-4-[6-(tetrazol-5-yl)hexyloxy]acetophenone (4-THA), a tetrazole-substituted acetophenone which induces peroxisomal beta-oxidation in rodent liver, on fatty acid oxidation in vitro. In isolated hepatocytes, 4-THA inhibited the oxidation of oleate (C18:1) and decreased the mitochondrial redox state. The inhibition was more pronounced in the presence of 0.2 mM-oleate than with 0.5 mM, indicating the inhibition may be competitive. 4-THA had no effect on the oxidation of octanoate (C8:0), suggesting that the site of inhibition of oleate oxidation was the carnitine-dependent transport across the mitochondrial inner membrane. In rat liver mitochondria, 4-THA inhibited carnitine palmitoyltransferase I (CPT-I) competitively with respect to the substrate palmitoyl-CoA, increasing the apparent Km from 19 microM to 86 microM. The inhibition of CPT-I by 4-THA was independent of the concentration of the co-substrate carnitine. Whereas fasting attenuated the inhibition of CPT-I by malonyl-CoA, it did not diminish the inhibition by 4-THA. Inhibition of transferase activity by 4-THA and malonyl-CoA was attenuated in mitochondria which had been solubilized with octyl glucoside to expose the latent form of carnitine palmitoyltransferase (CPT-II), suggesting that the inhibition was specific for CPT-I. The specificity was further demonstrated in studies of mitochondrial beta-oxidation in which 4-THA inhibited the oxidation of palmitoyl-CoA but not palmitoylcarnitine. The results demonstrate that 4-THA inhibits fatty acid oxidation in rat liver in vitro at the site of transport across the mitochondrial inner membrane, CPT-I. Whether this disruption in mitochondrial oxidation is causally related to the induction of peroxisomal beta-oxidation is yet to be determined.


1983 ◽  
Vol 212 (2) ◽  
pp. 521-524 ◽  
Author(s):  
T W Stephens ◽  
G A Cook ◽  
R A Harris

Malonyl-CoA inhibition of carnitine palmitoyltransferase I was found to be very pH-dependent. Malonyl-CoA concentrations causing 50% inhibition (I50) at pH 6.0, 6.5, 7.0, 7.5 and 8.0 were 0.04, 1, 9, 40 and 200 microM respectively. It is suggested that a lowering of intracellular pH, such as might occur in ketoacidosis, may attenuate hepatic fatty acid oxidation by increasing malonyl-CoA sensitivity of carnitine palmitoyltransferase I.


1985 ◽  
Vol 227 (2) ◽  
pp. 651-660 ◽  
Author(s):  
T W Stephens ◽  
A J Higgins ◽  
G A Cook ◽  
R A Harris

Oxfenicine [S-2-(4-hydroxyphenyl)glycine] is transaminated in heart and liver to 4-hydroxyphenylglyoxylate, an inhibitor of fatty acid oxidation shown in this study to act at the level of carnitine palmitoyltransferase I (EC 2.3.1.21). Oxfenicine was an effective inhibitor of fatty acid oxidation in heart, but not in liver. Tissue specificity of oxfenicine inhibition of fatty acid oxidation was due to greater oxfenicine transaminase activity in heart and to greater sensitivity of heart carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate [I50 (concentration giving 50% inhibition) of 11 and 510 microM for the enzymes of heart and liver mitochondria, respectively]. Branched-chain-amino-acid aminotransferase (isoenzyme I, EC 2.6.1.42) was responsible for the transamination of oxfenicine in heart. A positive correlation was found between the capacity of various tissues to transaminate oxfenicine and the known content of branched-chain-amino-acid aminotransferase in these tissues. Out of three observed liver oxfenicine aminotransferase activities, one may correspond to asparagine aminotransferase, but the major activity could not be identified by partial purification and characterization. As reported previously for malonyl-CoA inhibition of carnitine palmitoyltransferase I, 4-hydroxyphenylglyoxylate inhibition of this enzyme was found to be very pH-dependent. In striking contrast with the kinetics of malonyl-CoA inhibition, 4-hydroxyphenylglyoxylate inhibition was not affected by oleoyl-CoA concentration, but was partially reversed by increasing carnitine concentrations.


2010 ◽  
Vol 298 (5) ◽  
pp. R1435-R1443 ◽  
Author(s):  
Xi Lin ◽  
Kwanseob Shim ◽  
Jack Odle

To examine the regulation of hepatic acetogenesis in neonatal swine, carnitine palmitoyltransferase I (CPT I) activity was measured in the presence of varying palmitoyl-CoA (substrate) and malonyl-CoA (inhibitor) concentrations, and [1-14C]-palmitate oxidation was simultaneously measured. Accumulation rates of 14C-labeled acetate, ketone bodies, and citric acid cycle intermediates within the acid-soluble products were determined using radio-HPLC. Measurements were conducted in mitochondria isolated from newborn, 24-h (fed or fasted), and 5-mo-old pigs. Acetate rather than ketone bodies was the predominant radiolabeled product, and its production increased twofold with increasing fatty acid oxidation during the first 24-h suckling period. The rate of acetogenesis was directly proportional to CPT I activity. The high activity of CPT I in 24-h-suckling piglets was not attributable to an increase in CPT I gene expression, but rather to a large decrease in the sensitivity of CPT I to malonyl-CoA inhibition, which offset a developmental decrease in affinity of CPT I for palmitoyl-CoA. Specifically, the IC50 for malonyl-CoA inhibition and Km value for palmitoyl-CoA measured in 24-h-suckling pigs were 1.8- and 2.7-fold higher than measured in newborn pigs. The addition of anaplerotic carbon from malate (10 mM) significantly reduced 14C accumulation in acetate ( P < 0.003); moreover, the reduction was much greater in newborn (80%) than in 24-h-fed (72%) and 5-mo-old pigs (55%). The results demonstrate that acetate is the primary product of hepatic mitochondrial β-oxidation in Sus scrofa and that regulation during early development is mediated primarily via kinetic modulation of CPT I.


Sign in / Sign up

Export Citation Format

Share Document