scholarly journals Effect of cross-linkers on the structure and function of pig-renal sodium–glucose cotransporters after papain treatment

1998 ◽  
Vol 330 (2) ◽  
pp. 733-736 ◽  
Author(s):  
Jean GIUDICELLI ◽  
Marie-France BERTRAND ◽  
Stephane BILSKI ◽  
T. Than TRAN ◽  
Jean-Claude POIREE

Kidney brush-border membranes contain two sodium-dependent glucose transporters, one with low and one with high affinity for phlorizin, the specific inhibitor of these transporters. Using Scatchard analysis of phlorizin binding and Western blotting with specific antibodies against these transporters, we demonstrate in this study that although both transporters were proteolysed by papain treatment, only the high-affinity phlorizin-binding sites were decreased. Papain treatment followed by cross-linking with homobifunctional disuccinimidyl tartarate restored only the structure of the low-affinity phlorizin-binding protein (approx. molecular mass 70 kDa) without modifying the phlorizin-binding sites. When disuccinimidyl tartarate was replaced with dithiobis(succinimidyl acetate), another homobifunctional cross-linker with a higher spacer arm, the low- and high-affinity sites were both restored, with reappearance of two phlorizin-binding proteins with approx. molecular masses of 70 and 120 kDa. We conclude that high-affinity phlorizin-binding sites depend on the presence of the heterodimeric 120 kDa protein.

1984 ◽  
Vol 102 (1) ◽  
pp. 57-61 ◽  
Author(s):  
H. Humphries ◽  
S. MacNeil ◽  
D. S. Munro ◽  
S. Tomlinson

ABSTRACT Recent evidence suggests that epidermal growth factor (EGF) may play an important role in the regulation of thyroid growth and function. We have examined the interaction of murine EGF (mEGF) with human and porcine thyroid membranes and compared this with the binding of bovine TSH (bTSH) using 125I-labelled hormones as tracers. The characteristics of the binding of mEGF were found to be similar for human and porcine thyroid membranes. Epidermal growth factor bound with high affinity (affinity constant = 1·4 × 109 l/mol); the density of binding sites was low compared with the TSH receptor. At 37 °C, the binding of 125I-labelled EGF was maximal at 1 h and was saturable in the presence of unlabelled EGF; half-maximal inhibition was at 1 ng EGF/tube (0·5 nmol/l) using 0·5 mg membrane protein/tube. Unlabelled bTSH had no effect on the binding of labelled EGF. Similarly, unlabelled EGF did not affect the binding of labelled TSH; hence it was concluded that mEGF and bTSH bound to independent sites. Epidermal growth factor had no effect on adenylate cyclase activity in membranes prepared from human non-toxic goitre; increasing concentrations of EGF did not affect basal, TSH-stimulated or fluoride-stimulated enzyme activity. J. Endocr. (1984) 102, 57–61


2019 ◽  
Vol 20 (6) ◽  
pp. 1353 ◽  
Author(s):  
Quan Wang ◽  
Sha Yang ◽  
Shubo Wan ◽  
Xinguo Li

As a secondary messenger, calcium participates in various physiological and biochemical reactions in plants. Photosynthesis is the most extensive biosynthesis process on Earth. To date, researchers have found that some chloroplast proteins have Ca2+-binding sites, and the structure and function of some of these proteins have been discussed in detail. Although the roles of Ca2+ signal transduction related to photosynthesis have been discussed, the relationship between calcium and photosynthesis is seldom systematically summarized. In this review, we provide an overview of current knowledge of calcium’s role in photosynthesis.


1991 ◽  
Vol 69 (12) ◽  
pp. 809-820 ◽  
Author(s):  
William Goumakos ◽  
Jean-Pierre Laussac ◽  
Bibudhendra Sarkar

The binding of Cd(II) and Zn(II) to human serum albumin (HSA) and dog serum albumin (DSA) has been studied by equilibrium dialysis and 113Cd(II)-NMR techniques at physiological pH. Scatchard analysis of the equilibrium dialysis data indicate the presence of at least two classes of binding sites for Cd(II) and Zn(II). On analysis of the high-affinity class of sites, HSA is shown to bind 2.08 ± 0.09 (log K = 5.3 ± 0.6) and 1.07 ± 0.12 (log K = 6.4 ± 0.8) moles of Cd(II) and Zn(II) per mole of protein, respectively. DSA bound 2.02 ± 0.19 (log K = 5.1 ± 0.8), and 1.06 ± 0.15 (log K = 6.0 ± 0.2) moles of Cd(II) and Zn(II) per mole of protein, respectively. Competition studies indicate the presence of one high-affinity Cd(II) site on both HSA and DSA that is not affected by Zn(II) or Cu(II), and one high-affinity Zn(II) site on both HSA and DSA that is not affected by Cd(II) or Cu(II). 113Cadmium-HSA spectra display three resonances corresponding to three different sites of complexation. In site I, Cd(II) is most probably coordinated to two or three histidyl residues, site II to one histidyl residue and three oxygen ligands (carboxylate), while for the most upfield site III, four oxygens are likely to be involved in the binding of the metal ion. The 113Cd(II)-DSA spectra display only two resonances corresponding to two different sites of complexation. The environment around Cd(II) at sites I and II on DSA is similar to sites I and II, respectively, on HSA. No additional resonances are observed in any of these experiments and in particular in the low field region where sulfur coordination occurs. Overall, our results are consistent with the proposal that the physiologically important high-affinity Zn(II) and Cd(II) binding sites of albumins are located not at the Cu(II)-specific NH2-terminal site, but at internal sites, involving mostly nitrogen and oxygen ligands and no sulphur ligand.Key words: albumin, human serum, dog serum, cadmium, zinc, copper, NMR, equilibrium dialysis, binding.


1992 ◽  
Vol 70 (11) ◽  
pp. 1508-1514 ◽  
Author(s):  
Cheryl Rogers ◽  
Simon Lemaire

High-affinity binding sites (apparent KD 2.87 nM) for [3H]desmethylimipramine ([3H]DMI), have been demonstrated and characterized in membrane preparations of bovine adrenal medulla. The binding of [3H]DMI improved upon pretreatment of the membrane with KCl and was saturable, sodium dependent, and potently inhibited by nisoxetine and imipramine. [3H]DMI binding was also inhibited by various phencyclidine (PCP)- and (or) σ-receptor ligands, with the following order of potency: haloperidol > rimcazole > (−)-butaclamol > dextromethorphan > MK-801 > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine((+)-3-PPP) > PCP > N-(2-thienyl)cyclohexyl-3,4-piperidine (TCP) > (+)-SKF-10047 > (−)-SKF-10047. The inhibition produced by σ ligands was not attributed to stimulation of either σ1- or σ2-receptors, owing to inactivity of the selective σ-receptor ligands (+)-pentazocine and 1,3-di(2-tolyl)guanidine (DTG). The inhibition of [3H]DMI binding by σ- and PCP-receptor ligands was not attributed to PCP1- or PCP2-receptor stimulation, owing to the decreased potency (100-fold) of these ligands in [3H]DMI assays compared with the affinity for brain PCP1 sites, and the ineffectiveness of the PCP2-ligand N-(1-(2-benzo(b)thiophenyl)cyclohexyl)piperidine (BTCP). Scatchard analysis of the inhibition by the σ-ligands haloperidol and (+)-3-PPP, as well as the PCP1 receptor ligand MK-801, demonstrated noncompetitive interaction with the site bound by [3H]DMI. These studies indicate that bovine adrenomedullary membranes possess a specific receptor for the noradrenaline uptake inhibitor [3H]DMI, which is sensitive to allosteric modulation produced by PCP and σ-ligands.Key words: desmethylimipramine, σ-receptor, phencyclidine, noradrenaline uptake, adrenal medulla.


2010 ◽  
Vol 401 (4) ◽  
pp. 590-604 ◽  
Author(s):  
Anson C.K. Chan ◽  
Tzanko I. Doukov ◽  
Melanie Scofield ◽  
Stacey A.L. Tom-Yew ◽  
Alexander B. Ramin ◽  
...  

1989 ◽  
Vol 169 (2) ◽  
pp. 379-391 ◽  
Author(s):  
R Fernandez-Botran ◽  
V M Sanders ◽  
E S Vitetta

IL-2 and IL-4 induce a synergistic proliferative response in HT-2 cells, suggesting that IL-2Rs and IL-4Rs may interact. The purpose of this study was to examine the effect of IL-4 on the expression and function of IL-2Rs. Preincubation of HT-2 and BCL1-3B3 cells with IL-4 for 60 min at 4 degrees C or 37 degrees C resulted in a partial decrease in the number, but not the affinity of high affinity IL-2Rs as evidenced by Scatchard analysis of binding data. The decrease in the number of high affinity receptors correlated with decreased internalization of IL-2. After preincubation with IL-4, crosslinking of 125I-IL-2 to high affinity IL-2Rs also demonstrated a approximately 50% reduction in the number of high affinity IL-2Rs. Another lymphokine, IL-1, which acts on HT-2 cells, had no measurable effect on the affinity or number of IL-2Rs. Taken together, these results indicate that IL-4 downregulates the expression of high affinity IL-2Rs on some cells. It is not known whether this occurs by a direct ligand-mediated receptor interaction, by the sharing of a common receptor subunit, or by interaction of the two receptors with another membrane molecule or cytoskeletal component.


Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 463-471 ◽  
Author(s):  
EI Peerschke

Abstract Tertiary amine local anesthetics modify a variety of platelet membrane- related functions. The present study explored dibucaine (DB)-induced inhibition of platelet cohesion by examining structural and functional alterations of the human platelet membrane glycoprotein IIb-IIIa complex (GPIIb-IIIa) and platelet Ca2+ homeostasis. Complete inhibition of ADP-induced aggregation was achieved five minutes after platelet exposure to 0.10 to 0.25 mmol/L of DB when fibrinogen binding was reduced by 50%. At higher concentrations of DB (approximately 1 mmol/L), ADP-induced fibrinogen binding was completely blocked. Scatchard analysis revealed loss of high-affinity binding sites in addition to reduction in Bmax. In contrast, chymotrypsin-treated platelets sustained 50% inhibition of fibrinogen binding when incubated with 0.4 to 0.5 mmol/L DB, and kinetic analysis showed that the high- affinity platelet-fibrinogen interactions were reduced but not absent. Fibrinogen binding to chymotrypsin-treated platelets could not be completely inhibited even at high DB concentrations (1 mmol/L). The inhibition of fibrinogen binding to chymotrypsin-treated platelets correlated with changes in binding of a monoclonal antibody (10E5) specific for an epitope on the GPIIb-IIIa complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and radioelectroimmunoassay of DB-treated platelets, however, showed no evidence of a reduction or degradation of GP IIb or IIIa. Platelet incubation with DB (five minutes, 0.1 to 1.0 mmol/L) was also accompanied by: increased platelet membrane-associated Ca2+ involving low-affinity binding sites [Kd = 5 X 10(-5) mol/L-]; increased 45Ca2+ uptake which correlated with degradation of actin-binding protein (ABP) and digestion of GPIb as visualized on periodic-acid Schiff (PAS)- stained SDS gels and as inferred from decreased binding of a monoclonal antibody (6D1) directed against this glycoprotein; and enhanced Ca2+ exchange. Thus, exposure of platelets to DB results in membrane-related alterations that may contribute to inhibition of platelet cohesion: Decreased fibrinogen receptor exposure by traditional agonists and diminished accessibility of the GPIIb-IIIa complex to extracellular ligands correlate with DB-induced inhibition of platelet aggregation; and increased calcium uptake and exchange across the platelet membrane likely leads to activation of the calcium-dependent protease(s) which was previously shown to correlate with DB-induced inhibition of ristocetin-induced platelet agglutination.


Sign in / Sign up

Export Citation Format

Share Document