scholarly journals Heterogeneous nuclear ribonucleoprotein D0 contains transactivator and DNA-binding domains

2000 ◽  
Vol 348 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Mate TOLNAY ◽  
Lajos BARANYI ◽  
George C. TSOKOS

Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) is an abundant, ubiquitous protein that binds RNA and DNA sequences specifically, and has been implicated in the transcriptional regulation of the human complement receptor 2 gene. We found that in vivo expression of hnRNP D0-GAL4 fusion proteins increased the transcriptional activity of a GAL4-driven reporter gene, providing direct proof that hnRNP D0 possesses a transactivator domain. We found, using truncated hnRNP D0 proteins fused to GAL4, that 29 amino acids in the N-terminal region are critical for transactivation. We established, using a series of recombinant truncated hnRNP D0 proteins, that the tandem RNA-binding domains alone were not able to bind double-stranded DNA. Nevertheless, 24 additional amino acids of the C-terminus imparted sequence-specific DNA binding. Experiments using peptide-specific antisera supported the importance of the 24-amino-acid region in DNA binding, and suggested the involvement of the 19-amino-acid alternative insert which is present in isoforms B and D. The N-terminus had an inhibitory effect on binding of hnRNP D0 to single-stranded, but not to double-stranded, DNA. Although both recombinant hnRNP D0B and D0D bound DNA, only the B isoform recognized DNA in vivo. We propose that the B isoform of hnRNP D0 functions in the nucleus as a DNA-binding transactivator and has distinct transactivator and DNA-binding domains.

1991 ◽  
Vol 11 (6) ◽  
pp. 2994-3000 ◽  
Author(s):  
K M Yao ◽  
K White

Drosophila virilis genomic DNA corresponding to the D. melanogaster embryonic lethal abnormal visual system (elav) locus was cloned. DNA sequence analysis of a 3.8-kb genomic piece allowed identification of (i) an open reading frame (ORF) with striking homology to the previously identified D. melanogaster ORF and (ii) conserved sequence elements of possible regulatory relevance within and flanking the second intron. Conceptual translation of the D. virilis ORF predicts a 519-amino-acid-long ribonucleoprotein consensus sequence-type protein. Similar to D. melanogaster ELAV protein, it contains three tandem RNA-binding domains and an alanine/glutamine-rich amino-terminal region. The sequence throughout the RNA-binding domains, comprising the carboxy-terminal 346 amino acids, shows an extraordinary 100% identity at the amino acid level, indicating a strong structural constraint for this functional domain. The amino-terminal region is 36 amino acids longer in D. virilis, and the conservation is 66%. In in vivo functional tests, the D. virilis ORF was indistinguishable from the D. melanogaster ORF. Furthermore, a D. melanogaster ORF encoding an ELAV protein with a 40-amino-acid deletion within the alanine/glutamine-rich region was also able to supply elav function in vivo. Thus, the divergence of the amino-terminal region of the ELAV protein reflects lowered functional constraint rather than species-specific functional specification.


1999 ◽  
Vol 338 (2) ◽  
pp. 417-425 ◽  
Author(s):  
Mate TOLNAY ◽  
Lyudmila A. VERESHCHAGINA ◽  
George C. TSOKOS

Complement receptor 2 (CR2) is important in the regulation of the B lymphocyte response; the regulation of its expression is therefore of central importance. We recently reported that a 42 kDa heterogeneous nuclear ribonucleoprotein (hnRNP) is involved in the transcriptional regulation of the human CR2 gene [Tolnay, Lambris and Tsokos (1997) J. Immunol. 159, 5492–5501]. We cloned the cDNA encoding this protein and found it to be identical with hnRNP D0B, a sequence-specific RNA-binding protein. By using a set of mutated oligonucleotides, we demonstrated that the recombinant hnRNP D0B displays sequence specificity for double-stranded oligonucleotide defined by the CR2 promoter. We conducted electrophoretic mobility-shift assays to estimate the apparent Kd of hnRNP D0B for the double-stranded DNA motif and found it to be 59 nM. Interestingly, hnRNP D0B displayed affinities of 28 and 18 nM for the sense and anti-sense strands of the CR2 promoter-defined oligonucleotide respectively. The significantly greater binding affinity of hnRNP D0B for single-stranded DNA than for double-stranded DNA suggests that the protein might melt the double helix. The intranuclear concentration of sequence-specific protein was estimated to be 250–400 nM, indicating that the protein binds to the CR2 promoter in vivo. Co-precipitation of a complex formed in vivo between hnRNP D0B and the TATA-binding protein demonstrates that hnRNP D0B interacts with the basal transcription apparatus. Our results suggest a new physiological role for hnRNP D0B that involves binding to double- and single-stranded DNA sequences in a specific manner and functioning as a transcription factor.


1991 ◽  
Vol 11 (6) ◽  
pp. 2994-3000
Author(s):  
K M Yao ◽  
K White

Drosophila virilis genomic DNA corresponding to the D. melanogaster embryonic lethal abnormal visual system (elav) locus was cloned. DNA sequence analysis of a 3.8-kb genomic piece allowed identification of (i) an open reading frame (ORF) with striking homology to the previously identified D. melanogaster ORF and (ii) conserved sequence elements of possible regulatory relevance within and flanking the second intron. Conceptual translation of the D. virilis ORF predicts a 519-amino-acid-long ribonucleoprotein consensus sequence-type protein. Similar to D. melanogaster ELAV protein, it contains three tandem RNA-binding domains and an alanine/glutamine-rich amino-terminal region. The sequence throughout the RNA-binding domains, comprising the carboxy-terminal 346 amino acids, shows an extraordinary 100% identity at the amino acid level, indicating a strong structural constraint for this functional domain. The amino-terminal region is 36 amino acids longer in D. virilis, and the conservation is 66%. In in vivo functional tests, the D. virilis ORF was indistinguishable from the D. melanogaster ORF. Furthermore, a D. melanogaster ORF encoding an ELAV protein with a 40-amino-acid deletion within the alanine/glutamine-rich region was also able to supply elav function in vivo. Thus, the divergence of the amino-terminal region of the ELAV protein reflects lowered functional constraint rather than species-specific functional specification.


2005 ◽  
Vol 79 (13) ◽  
pp. 8661-8664 ◽  
Author(s):  
Stephen Schuck ◽  
Arne Stenlund

ABSTRACT Viral initiator proteins are polypeptides that form oligomeric complexes on the origin of DNA replication (ori). These complexes carry out a multitude of functions related to initiation of DNA replication, and although many of these functions have been characterized biochemically, little is understood about how the complexes are assembled. Here we demonstrate that loss of one particular interaction, the dimerization between E1 DNA binding domains, has a severe effect on DNA replication in vivo but has surprisingly modest effects on most individual biochemical activities in vitro. We conclude that the dimer interaction is primarily required for initial recognition of ori.


2010 ◽  
Vol 30 (22) ◽  
pp. 5325-5334 ◽  
Author(s):  
Meghan T. Mitchell ◽  
Jasmine S. Smith ◽  
Mark Mason ◽  
Sandy Harper ◽  
David W. Speicher ◽  
...  

ABSTRACT The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2673-2685 ◽  
Author(s):  
C. Bertuccioli ◽  
L. Fasano ◽  
S. Jun ◽  
S. Wang ◽  
G. Sheng ◽  
...  

The Drosophila pair-rule gene paired is required for the correct expression of the segment polarity genes wingless, engrailed and gooseberry. It encodes a protein containing three conserved motifs: a homeodomain (HD), a paired domain (PD) and a PRD (His/Pro) repeat. We use a rescue assay in which paired (or a mutated version of paired in which the functions of the conserved motifs have been altered) is expressed under the control of its own promoter, in the absence of endogenous paired, to dissect the Paired protein in vivo. We show that both the HD and the N- terminal subdomain of the PD (PAI domain) are absolutely required within the same molecule for normal paired function. In contrast, the conserved C-terminal subdomain of the PD (RED domain) appears to be dispensable. Furthermore, although a mutation abolishing the ability of the homeodomain to dimerize results in an impaired Paired molecule, this molecule is nonetheless able to mediate a high degree of rescue. Finally, a paired transgene lacking the PRD repeat is functionally impaired, but still able to rescue to viability. We conclude that, while Prd can use its DNA-binding domains combinatorially in order to achieve different DNA-binding specificities, its principal binding mode requires a cooperative interaction between the PAI domain and the homeodomain.


1993 ◽  
Vol 13 (12) ◽  
pp. 7257-7266 ◽  
Author(s):  
C Carriere ◽  
S Plaza ◽  
P Martin ◽  
B Quatannens ◽  
M Bailly ◽  
...  

After differential screening of a cDNA library constructed from quail neuroretina cells (QNR) infected with the v-myc-containing avian retrovirus MC29, we have isolated a cDNA clone, Pax-QNR, homologous to the murine Pax-6, which is mutated in the autosomal dominant mutation small eye of mice and in the disorder aniridia in humans. Here we report the characterization of the Pax-QNR proteins expressed in the avian neuroretina. From bacterially expressed Pax-QNR peptides, we obtained rabbit antisera directed against different domains of the protein: paired domain (serum 11), domain between the paired domain and homeodomain (serum 12), homeodomain (serum 13), and carboxyl-terminal part (serum 14). Sera 12, 13, and 14 were able to specifically recognize five proteins (48, 46, 43, 33, and 32 kDa) in the neuroretina. In contrast to proteins of 48, 46, and 43 kDa, proteins of 33 and 32 kDa were not recognized by the paired antiserum (serum 11). Paired-less and paired-containing proteins exhibited the same half-life (6 h) and were phosphorylated mostly on serine residues. Immunoprecipitations performed with subcellular fractions of neuroretinas showed that the paired-containing proteins were located in the nucleus, whereas the 33- and 32-kDa proteins were found essentially in the cytoplasmic compartment. However, immunofluorescence experiments performed after transient transfections showed that p46 and p33/32 were also located in vivo into the nucleus. Thus, the Pax-QNR/Pax-6 gene can produce proteins with two DNA-binding domains as well as proteins containing only the DNA-binding homeodomain.


2001 ◽  
Vol 21 (16) ◽  
pp. 5591-5604 ◽  
Author(s):  
Sanjeev Galande ◽  
Liliane A. Dickinson ◽  
I. Saira Mian ◽  
Marianna Sikorska ◽  
Terumi Kohwi-Shigematsu

ABSTRACT SATB1 is expressed primarily in thymocytes and orchestrates temporal and spatial expression of a large number of genes in the T-cell lineage. SATB1 binds to the bases of chromatin loop domains in vivo, recognizing a special DNA context with strong base-unpairing propensity. The majority of thymocytes are eliminated by apoptosis due to selection processes in the thymus. We investigated the fate of SATB1 during thymocyte and T-cell apoptosis. Here we show that SATB1 is specifically cleaved by a caspase 6-like protease at amino acid position 254 to produce a 65-kDa major fragment containing both a base-unpairing region (BUR)-binding domain and a homeodomain. We found that this cleavage separates the DNA-binding domains from amino acids 90 to 204, a region which we show to be a dimerization domain. The resulting SATB1 monomer loses its BUR-binding activity, despite containing both its DNA-binding domains, and rapidly dissociates from chromatin in vivo. We found this dimerization region to have sequence similarity to PDZ domains, which have been previously shown to be involved in signaling by conferring protein-protein interactions. SATB1 cleavage during Jurkat T-cell apoptosis induced by an anti-Fas antibody occurs concomitantly with the high-molecular-weight fragmentation of chromatin of ∼50-kb fragments. Our results suggest that mechanisms of nuclear degradation early in apoptotic T cells involve efficient removal of SATB1 by disrupting its dimerization and cleavage of genomic DNA into loop domains to ensure rapid and efficient disassembly of higher-order chromatin structure.


1992 ◽  
Vol 12 (7) ◽  
pp. 3006-3014 ◽  
Author(s):  
E A Golemis ◽  
R Brent

Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions.


Sign in / Sign up

Export Citation Format

Share Document