Specificity and mechanism of action of some commonly used protein kinase inhibitors

2000 ◽  
Vol 351 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Stephen P. DAVIES ◽  
Helen REDDY ◽  
Matilde CAIVANO ◽  
Philip COHEN

The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.

2009 ◽  
Vol 419 (3) ◽  
pp. 669-679 ◽  
Author(s):  
Yongzheng Wu ◽  
Sheldon I. Feinstein ◽  
Yefim Manevich ◽  
Ibrul Chowdhury ◽  
Jhang Ho Pak ◽  
...  

Prdx6 (peroxiredoxin 6), a bifunctional protein with both GSH peroxidase and PLA2 (phospholipase A2) [aiPLA2 (acidic calcium-independent PLA2)] activities, is responsible for the metabolism of lung surfactant phospholipids. We propose that the aiPLA2 activity of the enzyme is regulated through phosphorylation. Incubation of isolated rat alveolar type II cells (AECII) with PMA, a PKC (protein kinase C) agonist, had no effect on Prdx6 expression but led to ∼75% increase in aiPLA2 activity that was abolished by pretreatment of cells with the MAPK (mitogen-activated protein kinase) inhibitors, SB202190 or PD98059. Prdx6 phosphorylation after incubation of AECII with PMA was demonstrated by autoradiography after immunoprecipitation with either anti-phosphothreonine o-phosphoserine antibodies. in vitro, several active isoforms of ERK (extracellular-signal-regulated kinase) and p38 phosphorylated Prdx6, resulting in an 11-fold increase in aiPLA2 activity. The increased activity was calcium-independent and was abolished by the aiPLA2 inhibitors, surfactant protein A and hexadecyl-3-trifluorethylglycero-sn-2-phospho-methanol (MJ33). The peroxidase activity of Prdx6 was unaffected by phosphorylation. Mass spectroscopic analysis of in vitro phosphorylated Prdx6 showed a unique phosphorylation site at Thr-177 and mutation of this residue abolished protein phosphorylation and the increase in MAPK-mediated activity. These results show that the MAPKs can mediate phosphorylation of Prdx6 at Thr-177 with a consequent marked increase in its aiPLA2 activity.


2015 ◽  
Vol 13 (43) ◽  
pp. 10699-10704 ◽  
Author(s):  
Ahmed El-Gokha ◽  
Stefan A. Laufer ◽  
Pierre Koch

An optimized and diverse synthetic approach for the preparation of potent pyridinylimidazole-based p38α MAP kinase inhibitors is reported.


JAMA Oncology ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 275 ◽  
Author(s):  
Robert M. J. Purbrick ◽  
Olaoluwakitan A. Osunkunle ◽  
Denis C. Talbot ◽  
Susan M. Downes

2020 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Sandeep Kumar ◽  
Daniel R. Principe ◽  
Sunil Kumar Singh ◽  
Navin Viswakarma ◽  
Gautam Sondarva ◽  
...  

Mitogen-activated protein kinase (MAPK) signaling networks serve to regulate a wide range of physiologic and cancer-associated cell processes. For instance, a variety of oncogenic mutations often lead to hyperactivation of MAPK signaling, thereby enhancing tumor cell proliferation and disease progression. As such, several components of the MAPK signaling network have been proposed as viable targets for cancer therapy. However, the contributions of MAPK signaling extend well beyond the tumor cells, and several MAPK effectors have been identified as key mediators of the tumor microenvironment (TME), particularly with respect to the local immune infiltrate. In fact, a blockade of various MAPK signals has been suggested to fundamentally alter the interaction between tumor cells and T lymphocytes and have been suggested a potential adjuvant to immune checkpoint inhibition in the clinic. Therefore, in this review article, we discuss the various mechanisms through which MAPK family members contribute to T-cell biology, as well as circumstances in which MAPK inhibition may potentiate or limit cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document