Spot 14 protein interacts and co-operates with chicken ovalbumin upstream promoter-transcription factor 1 in the transcription of the L-type pyruvate kinase gene through a specificity protein 1 (Sp1) binding site

2001 ◽  
Vol 358 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Emmanuel COMPE ◽  
Georges de SOUSA ◽  
Kamel FRANCÇOIS ◽  
Régis ROCHE ◽  
Roger RAHMANI ◽  
...  

In hepatocytes, the amount of the Spot 14 (S14) protein is closely related to the full expression of enzymes involved in the glycolytic and lipogenic pathways. In the present study we address the role played by this protein in the control of transcription of the L-type pyruvate kinase (L-PK) gene in primary hepatocytes. We show that human S14, which by itself does not bind to the L-PK promoter, physically interacts with the human chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) and induces the switch of this factor from a repressor to an activator. However, the enhancing activity of S14 and COUP-TF1 depends on the presence of a proximal GC-rich box (the L0 element) that specifically binds nuclear proteins from the livers of rats fed a glucose-rich diet. Moreover, the L0 element, which strongly binds dephosphorylated specificity protein 1 (Sp1), loses all affinity when this factor is phosphorylated by cAMP-dependent protein kinase. Mutations that affect binding of Sp1 and nuclear proteins to the L0 box also decrease basal transcription and impair glucose responsiveness of the promoter. These results therefore shed light on the mechanism by which the S14 protein, whose concentration rapidly rises after glucose intake, contributes to the full activity of the L-PK promoter.

1999 ◽  
Vol 13 (2) ◽  
pp. 239-253 ◽  
Author(s):  
Khaled Zeitoun ◽  
Kazuto Takayama ◽  
M. Dod Michael ◽  
Serdar E. Bulun

Abstract In stromal cells of endometriosis, marked levels of aromatase P450 (P450arom) mRNA and activity are present and can be vigorously stimulated by (Bu)2cAMP or PGE2 to give rise to physiologically significant estrogen biosynthesis. Since eutopic endometrial tissue or stromal cells lack P450arom expression, we studied the molecular basis for differential P450arom expression in endometriosis and eutopic endometrium. First, we demonstrated by rapid amplification of cDNA 5′-ends that P450arom expression in pelvic endometriotic lesions is regulated almost exclusively via the alternative promoter II. Then, luciferase reporter plasmids containing deletion mutations of the 5′-flanking region of promoter II were transfected into endometriotic stromal cells. We identified two critical regulatory regions for cAMP induction of promoter II activity: 1) a −214/−100 bp proximal region responsible for a 3.7-fold induction, and 2) a −517/−214 distal region responsible for potentiation of cAMP response up to 13-fold. In the −214/−100 region, we studied eutopic endometrial and endometriotic nuclear protein binding to a nuclear receptor half-site (NRHS, AGGTCA) and an imperfect cAMP response element (TGCACGTCA). Using electrophoretic mobility shift assay, cAMP response element-binding activity in nuclear proteins from both endometriotic and eutopic endometrial cells gave rise to formation of identical DNA-protein complexes. The NRHS probe, on the other hand, formed a distinct complex with nuclear proteins from endometriotic cells, which migrated at a much faster rate compared with the complex formed with nuclear proteins from eutopic endometrial cells. Employing recombinant proteins and antibodies against steroidogenic factor-1 (SF-1) and chicken ovalbumin upstream promoter transcription factor (COUP-TF), we demonstrated that COUP-TF but not SF-1 bound to NRHS in eutopic endometrial cells, whereas SF-1 was the primary NRHS-binding protein in endometriotic cells. In fact, COUP-TF transcripts were present in both eutopic endometrial (n = 12) and endometriotic tissues (n = 8), whereas SF-1 transcripts were detected in all endometriotic tissues (n = 12), but in only 3 of 15 eutopic endometrial tissues. Moreover, we demonstrated a dose-dependent direct competition between SF-1 and COUP-TF for occupancy of the NRHS, to which SF-1 bound with a higher affinity. Finally, overexpression of SF-1 in eutopic endometrial and endometriotic cells strikingly potentiated baseline and cAMP-induced activities of −517 promoter II construct, whereas overexpression of COUP-TF almost completely abolished these activities. In conclusion, COUP-TF might be one of the factors responsible for the inhibition of P450arom expression in eutopic endometrial stromal cells, which lack SF-1 expression in the majority (80%) of the samples; in contrast, aberrant SF-1 expression in endometriotic stromal cells can override this inhibition by competing for the same DNA-binding site, which is likely to account for high levels of baseline and cAMP-induced aromatase activity.


Sign in / Sign up

Export Citation Format

Share Document