An active immunization approach to generate protective catalytic antibodies

2001 ◽  
Vol 360 (1) ◽  
pp. 151-157 ◽  
Author(s):  
Jun WANG ◽  
Yunqing HAN ◽  
Miles F. WILKINSON

We report that mice immunized with a phosphate immunogen produced polyclonal catalytic antibodies (PCAbs) that catalysed the hydrolysis of carbaryl, a widely used broad-spectrum carbamate insecticide that exerts toxic effects in animals and humans. The reaction catalysed by the PCAbs (IgGs) obeyed Michaelis–Menten kinetics in vitro with the following values at pH8.0 and 25°C: Km≈ 8.0μM, kcat = 4.8×10−3–5.8×10−1, kcat/knon-cat = 5.6×101–6.8×103 (where knon-cat is the rate constant of the reaction in the absence of added catalyst). The PCAbs were also active in whole sera under physiological conditions in vitro. The PCAbs induced in vivo were also active in vivo, as immunization with the phosphate immunogen decreased the mouse blood concentration of carbaryl. To our knowledge, this is the first report demonstrating that active immunization generates antibodies possessing therapeutic catalytic function in vivo. We propose that active immunization schemes that induce enzymically active antibodies may provide a highly specific therapeutic approach for degrading toxic substances.

1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


Author(s):  
Anja Köhler ◽  
Benjamin Escher ◽  
Laura Job ◽  
Marianne Koller ◽  
Horst Thiermann ◽  
...  

AbstractHighly toxic organophosphorus nerve agents, especially the extremely stable and persistent V-type agents such as VX, still pose a threat to the human population and require effective medical countermeasures. Engineered mutants of the Brevundimonas diminuta phosphotriesterase (BdPTE) exhibit enhanced catalytic activities and have demonstrated detoxification in animal models, however, substrate specificity and fast plasma clearance limit their medical applicability. To allow better assessment of their substrate profiles, we have thoroughly investigated the catalytic efficacies of five BdPTE mutants with 17 different nerve agents using an AChE inhibition assay. In addition, we studied one BdPTE version that was fused with structurally disordered PAS polypeptides to enable delayed plasma clearance and one bispecific BdPTE with broadened substrate spectrum composed of two functionally distinct subunits connected by a PAS linker. Measured kcat/KM values were as high as 6.5 and 1.5 × 108 M−1 min−1 with G- and V-agents, respectively. Furthermore, the stereoselective degradation of VX enantiomers by the PASylated BdPTE-4 and the bispecific BdPTE-7 were investigated by chiral LC–MS/MS, resulting in a several fold faster hydrolysis of the more toxic P(−) VX stereoisomer compared to P(+) VX. In conclusion, the newly developed enzymes BdPTE-4 and BdPTE-7 have shown high catalytic efficacy towards structurally different nerve agents and stereoselectivity towards the toxic P(−) VX enantiomer in vitro and offer promise for use as bioscavengers in vivo.


Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2257-2266 ◽  
Author(s):  
Helmuth Adelsberger ◽  
Christian Hertel ◽  
Erich Glawischnig ◽  
Vladimir V. Zverlov ◽  
Wolfgang H. Schwarz

Four extracellular enzymes of the thermophilic bacterium Clostridium stercorarium are involved in the depolymerization of de-esterified arabinoxylan: Xyn11A, Xyn10C, Bxl3B, and Arf51B. They were identified in a collection of eight clones producing enzymes hydrolysing xylan (xynA, xynB, xynC), β-xyloside (bxlA, bxlB, bglZ) and α-arabinofuranoside (arfA, arfB). The modular enzymes Xyn11A and Xyn10C represent the major xylanases in the culture supernatant of C. stercorarium. Both hydrolyse arabinoxylan in an endo-type mode, but differ in the pattern of the oligosaccharides produced. Of the glycosidases, Bxl3B degrades xylobiose and xylooligosaccharides to xylose, and Arf51B is able to release arabinose residues from de-esterified arabinoxylan and from the oligosaccharides generated. The other glycosidases either did not attack or only marginally attacked these oligosaccharides. Significantly more xylanase and xylosidase activity was produced during growth on xylose and xylan. This is believed to be the first time that, in a single thermophilic micro-organism, the complete set of enzymes (as well as the respective genes) to completely hydrolyse de-esterified arabinoxylan to its monomeric sugar constituents, xylose and arabinose, has been identified and the enzymes produced in vivo. The active enzyme system was reconstituted in vitro from recombinant enzymes.


2004 ◽  
Vol 82 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Norma Marchesini ◽  
Yusuf A Hannun

Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingo myelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glu ta thi one, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).Key words: sphingomyelinase, ceramide, apoptosis, Niemann-Pick disease, FAN (factor associated with N-SMase activation).


2000 ◽  
Vol 113 (13) ◽  
pp. 2463-2470 ◽  
Author(s):  
F. Santini ◽  
R.B. Penn ◽  
A.W. Gagnon ◽  
J.L. Benovic ◽  
J.H. Keen

Non-visual arrestins (arrestin-2 and arrestin-3) play critical roles in the desensitization and internalization of many G protein-coupled receptors. In vitro experiments have shown that both non-visual arrestins bind with high and approximately comparable affinities to activated, phosphorylated forms of receptors. They also exhibit high affinity binding, again of comparable magnitude, to clathrin. Further, agonist-promoted internalization of many receptors has been found to be stimulated by exogenous over-expression of either arrestin2 or arrestin3. The existence of multiple arrestins raises the question whether stimulated receptors are selective for a specific endogenous arrestin under more physiological conditions. Here we address this question in RBL-2H3 cells, a cell line that expresses comparable levels of endogenous arrestin-2 and arrestin-3. When (beta)(2)-adrenergic receptors are stably expressed in these cells the receptors internalize efficiently following agonist stimulation. However, by immunofluorescence microscopy we determine that only arrestin-3, but not arrestin-2, is rapidly recruited to clathrin coated pits upon receptor stimulation. Similarly, in RBL-2H3 cells that stably express physiological levels of m1AChR, the addition of carbachol selectively induces the localization of arrestin-3, but not arrestin-2, to coated pits. Thus, this work demonstrates coupling of G protein-coupled receptors to a specific non-visual arrestin in an in vivo setting.


1985 ◽  
Vol 106 (2) ◽  
pp. 153-157
Author(s):  
N. Bagchi ◽  
T. R. Brown

ABSTRACT It has been reported that prior exposure of thyroid tissue to TSH in vitro induces a state of refractoriness to new challenges of the hormone. We have investigated the effect of repeated TSH treatment on thyroid secretion to determine whether such refractoriness exists in vivo. The rate of thyroid secretion was estimated by measuring the rate of hydrolysis of labelled thyroglobulin from mouse thyroid glands in vitro. The thyroid glands were labelled in vivo with 131I and then cultured for 20 h in the presence of mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the percentage of radioactivity released as free iodotyrosines and iodothyronines into the gland and the medium at the end of incubation. Thyrotrophin was administered in vivo at hourly intervals for 2–4 injections. The corresponding control group received saline injections every hour except for the last injection when they received TSH. The peak rates of thyroglobulin hydrolysis, measured 2 h following the last injection, were similar in animals receiving two, three or four TSH injections and were not different from those in the control groups. Serum tri-iodothyronine and thyroxine concentrations 2 h after the last injection were higher in the groups receiving multiple TSH injections. Thyroidal cyclic AMP accumulation in response to TSH was markedly depressed in the group receiving multiple injections compared with the group receiving a single injection of TSH in vivo. These data indicate that (1) the stimulatory effect of TSH on thyroidal secretion is not diminished by prior administration of the hormone in vivo, (2) repeated TSH administrations in vivo cause refractoriness of the adenylate cyclase response to TSH and (3) a dichotomy exists between the secretory response and the adenylate cyclase response to repeated administrations of TSH. J. Endocr. (1985) 106, 153–157


2000 ◽  
Vol 7 (4) ◽  
pp. 225-232 ◽  
Author(s):  
Thomas Pieper ◽  
Wolfgang Peti ◽  
Bernhard K. Keppler

The ruthenium(III) complex Hlnd trans-[RuCl4,(ind)2], with two trans-standing indazole (ind) ligands bound to ruthenium via nitrogen, shows remarkable activity in different tumor models in vitro and in vivo. The solvolysis of the complex trans-[RuCl4,(ind)2]- has been investigated by means of spectroscopic techniques (UV/vis, NMR)in different solvents. We investigated the indazolium as well as the sodium salt, the latter showing improved solubility in water. In aqueous acetonitrile and ethanol the solvolysis results in one main solvento complex. The hydrolysis of the complex is more complicated and depends on the pH of the solution as well as on the buffer system.


1979 ◽  
Vol 237 (2) ◽  
pp. F114-F120 ◽  
Author(s):  
A. I. Katz ◽  
A. Doucet ◽  
F. Morel

Na-K-ATPase activity along the rabbit, rat, and mouse nephron was determined with a micromethod that measures directly labeled phosphate released by the hydrolysis of [gamma-32P]ATP. Na-K-ATPase activity was highest in the rat, intermediate in the mouse, and lowest in the rabbit nephron. With the exception of rabbit cortical thick ascending limb, the enzyme profile was similar in the three species: Na-K-ATPase activity per millimeter tubule length was highest in the distal convoluted tubule and thick ascending limb of Henle's loop, intermediate in the proximal convoluted tubule, and lowest in the pars recta and collecting tubule. The enzyme was present in the thin limbs of Henle's loop, but its activity was very low and measurements were close to the sensitivity limit of the method. Both the absolute activity and the fraction of the total enzyme represented by Na-K-ATPase were severalfold higher than in kidney homogenates. Finally, the Na-K-ATPase activity measured in certain segments of the rat and rabbit nephron in this study seems sufficient to account in theory for the active component of the net sodium transport found in the corresponding region of the nephron with either in vivo or in vitro single tubule microperfusion techniques.


Sign in / Sign up

Export Citation Format

Share Document