scholarly journals Potential Anticancer Activities of Rhus coriaria (sumac) extract against human cancer cell lines

2021 ◽  
Author(s):  
Sami A. Gabr ◽  
Ahmad H. Alghadir

Therapeutic strategies of plant origin are a better choice as both dietary plant products or its isolated active constituents against the development and progression of cancer. This study aims to evaluate the anticancer activity of sumac (Rhus coriaria) against different human cancer MCF-7, PC-3, and SKOV3cell lines. In addition, the study tries to explore a prospective mechanism of action, assessment of in vitro enzyme-inhibitory capacity of sumac extract against hCA I, II, IX and XII. In this study, the potential antitumor effects of sumac (Rhus coriaria) were explored in the human cancer cell lines; MCF-7, PC-3, and SKOV3 using in vitro assays. Apoptotic, cell survival, ELISA immunoassays were also conducted to reveal the inhibi­tory effects of sumac extract against hCA I, II, IX and XII. In addition, both Clioquinol and Acetazolamide were used as standards to explore the in vitro enzyme-inhibitory capacity of sumac extract against hCA I, II, IX, and XII. The hydro-alcoholic extract of Rhus coriaria (Sumac) subjected to phytochemical analysis using GC/MS assays. Sumac at non-cytotoxic doses of 50 µM, and 100 µM significantly modulate the growth of the MCF-7, PC-3, and SKOV3 cancer cell with a higher inhibitory effect and selectivity to carbonic anhydrase (CA) isoforms; hCA I, II, hCA IX, and XII. The data showed that sumac at doses of 50 µM, and 100 µM significantly inhibited the growth, proliferation, and viability of cancer cells by activating the apoptotic process via caspase‑3 overexpression and the regulation of Bcl-2 anti-apoptotic protein.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


2021 ◽  
Vol 18 ◽  
Author(s):  
Tran Khac Vu ◽  
Bach Xuan Nguyen ◽  
Linh Nguyen Pham Duy ◽  
Thuc Bao Nguyen Truong ◽  
Anh Tuan Phung ◽  
...  

Background: In this study, two novel hybrid series of artemisinin and quinazolinones were synthesized and evaluated in vitro cytotoxicity against two human cancer cell lines, including SKLu-1 (lung cancer), MCF- 7 (breast cancer). The bio-assay results indicated that most of the target compounds exhibited cytotoxic activities against both human cancer cell lines tested, and seemed to be more cytotoxic toward the breast (MCF-7) cancer cells than lung (SKLu-1) cancer cells. Among the synthesized artemisinin hybrids, the compound 13d containing a quinazolinone conjugated system exhibited the most potent cytotoxicity against the SKLu-1 and MCF-7 cell lines with IC50 values of 1.62 and 0.77 µM, respectively. Objective: This study aims at developing novel hybrids of artemisinin and quinazolinones as anti-cancer agents. Method: A series of novel hybrids were designed, synthesized and evaluated for cytotoxicity against two human cancer cell lines, including SKLu-1 and MCF-7 using SRB method. Results : All thirteen hybrids of artemisinin with quinazolinone exhibited cytotoxic activity against two tested cancer cell lines, in which the compound 13d exhibited the most potent cytotoxicity against the SKLu-1 and MCF-7 cell lines with IC50 values of 1.62 and 0.77 µM, respectively. Conclusion: The research results suggest that some compounds could be considered as leads for future design of hybrids and have the potential for further studies in the field of anti-cancer agent development.


2018 ◽  
Vol 23 (2) ◽  
pp. 68
Author(s):  
Eti Nurwening Sholikhah ◽  
Jumina Jumina ◽  
Sitarina Widyarini ◽  
Ruslin Hadanu ◽  
Mustofa Mustofa

This research was conducted to evaluate the anticancer activity of new compounds of benzyl-1,10- phenanthroline derivatives and their selectivity. In vitro anticancer activity of 11 benzyl-1,10-phenanthroline derivatives were conducted on three human cancer cell lines, cervical cancer (HeLa), myeloma (NS-1), and breast cancer (MCF-7) using MTT-based cytotoxicity assay. The cytotoxicity of each compound was assessed to normal Vero cell line by the same method. The in vitro anticancer activity and cytotoxicity was expressed by the concentration inhibiting 50% of the cell growth (IC50), and the selectivity index (SI) was determined by calculating ratio of the IC50 on Vero cell line and the human cancer cell lines. The results showed that among the 11 compounds tested, the (1)-N-(4-butoxybenzyl)-1,10-phenanthrolinium bromide exhibited the best in vitro anticancer activity with an IC50 27.60 ± 2.76 µM on HeLa, 6.42 ± 5.53 µM on NS-1 and 9.44 ± 2.17 µM on MCF-7 cell lines. Its SI were 377.65 ± 39.97 on HeLa, 6158.72 ± 5306.34 on NS-1 and 1140.11 ± 261.85 on MCF-7 cell lines. This study demonstrated that (1)-N-(4-butoxybenzyl)-1,10-phenanthrolinium bromide possessed a potential in vitro anticancer activity on cancer cell lines with high selectivity


Author(s):  
Agnes Paradissis ◽  
Sophia Hatziantoniou ◽  
Aristidis Georgopoulos ◽  
Konstantinos Dimas ◽  
Costas Demetzos

Author(s):  
Suguru Fukahori ◽  
Hirohisa Yano ◽  
Jun Akiba ◽  
Sachiko Ogasawara ◽  
Seiya Momosaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document