Lectins and protein traffic early in the secretory pathway

2002 ◽  
Vol 69 ◽  
pp. 73-82 ◽  
Author(s):  
Hans-Peter Hauri ◽  
Oliver Nufer ◽  
Lionel Breuza ◽  
Houchaima Ben Tekaya ◽  
Lu Liang

Lectins of the early secretory pathway are involved in selective transport of newly synthesized glycoproteins from the endoplasmic reticulum (ER) to the ER–Golgi intermediate compartment (ERGIC). The most prominent cycling lectin is the mannose-binding type I membrane protein ERGIC-53 (ERGIC protein of 53 kDa), a marker for the ERGIC, which functions as a cargo receptor to facilitate export of an increasing number of glycoproteins with different characteristics from the ER. Two ERGIC-53-related proteins, VIP36 (vesicular integral membrane protein 36) and a novel ERGIC-53-like protein, ERGL, are also found in the early secretory pathway. ERGL may act as a regulator of ERGIC-53. Studies of ERGIC-53 continue to provide new insights into the organization and dynamics of the early secretory pathway. Analysis of the cycling of ERGIC-53 uncovered a complex interplay of trafficking signals and revealed novel cytoplasmic ER-export motifs that interact with COP-II coat proteins. These motifs are common to type I and polytopic membrane proteins including presenilin 1 and presenilin 2. The results support the notion that protein export from the ER is selective.

1993 ◽  
Vol 120 (4) ◽  
pp. 877-883 ◽  
Author(s):  
N Liu ◽  
D T Brown

The E2 glycoprotein of the alphavirus Sindbis is a typical type I membrane protein with a single membrane spanning domain and a cytoplasmic tail (endo domain) containing 33 amino acids. The carboxyl terminal domain of the tail has been implicated as (a) attachment site for nucleocapsid protein, and (b) signal sequence for integration of the other alpha-virus membrane proteins 6K and E1. These two functions require that the carboxyl terminus be exposed in the cell cytoplasm (a) and exposed in the lumen of the endoplasmic reticulum (b). We have investigated the orientation of this glycoprotein domain with respect to cell membranes by substituting a tyrosine for the normally occurring serine, four amino acids upstream of the carboxyl terminus. Using radioiodination of this tyrosine as an indication of the exposure of the glycoprotein tail, we have provided evidence that this domain is initially translocated into a membrane and is returned to the cytoplasm after export from the ER. This is the first demonstration of such a transient translocation of a single domain of an integral membrane protein and this rearrangement explains some important aspects of alphavirus assembly.


2002 ◽  
Vol 13 (3) ◽  
pp. 880-891 ◽  
Author(s):  
Jacqueline Powers ◽  
Charles Barlowe

Erv14p is a conserved integral membrane protein that traffics in COPII-coated vesicles and localizes to the early secretory pathway in yeast. Deletion of ERV14 causes a defect in polarized growth because Axl2p, a transmembrane secretory protein, accumulates in the endoplasmic reticulum and is not delivered to its site of function on the cell surface. Herein, we show that Erv14p is required for selection of Axl2p into COPII vesicles and for efficient formation of these vesicles. Erv14p binds to subunits of the COPII coat and binding depends on conserved residues in a cytoplasmically exposed loop domain of Erv14p. When mutations are introduced into this loop, an Erv14p-Axl2p complex accumulates in the endoplasmic reticulum, suggesting that Erv14p links Axl2p to the COPII coat. Based on these results and further genetic experiments, we propose Erv14p coordinates COPII vesicle formation with incorporation of specific secretory cargo.


1989 ◽  
Vol 108 (4) ◽  
pp. 1363-1373 ◽  
Author(s):  
C J Roberts ◽  
G Pohlig ◽  
J H Rothman ◽  
T H Stevens

We have characterized the structure, biogenesis, and localization of dipeptidyl aminopeptidase B (DPAP B), a membrane protein of the yeast vacuole. An antibody specific for DPAP B recognizes a 120-kD glycoprotein in yeast that behaves like an integral membrane protein in that it is not removed from membranes by high pH Na2CO3 treatment. Inspection of the deduced amino acid sequence of DPAP B reveals a hydrophobic domain near the NH2 terminus that could potentially span a lipid bilayer. The in vitro enzymatic activity and apparent molecular weight of DPAP B are unaffected by the allelic state of PEP4, a gene essential for the proteolytic activation of a number of soluble vacuolar hydrolases. DPAP B is synthesized as a glycosylated precursor that is converted to the mature 120-kD species by carbohydrate addition. The precursor form of DPAP B accumulates in sec mutants (Novick, P., C. Field, and R. Schekman. 1980. Cell. 21:205-215) that are blocked at the ER (sec18) or Golgi apparatus (sec7), but not at secretory vesicles (sec1). Immunolocalization of DPAP B in wild-type or sec1 mutant cells shows that the protein resides in the vacuolar membrane. However, it is present in non-vacuolar compartments in sec18 and sec7 cells, confirming that the delivery of DPAP B is blocked in these mutants. Interestingly, DPAP B appears to stain the nuclear envelope in a sec18 mutant, which is consistent with the accumulation of DPAP B in the ER membrane at the restrictive temperature. These results suggest that soluble and membrane-bound vacuolar proteins use the same stages of the secretory pathway for their transport.


1999 ◽  
Vol 47 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Leland G. Dobbs ◽  
Robert F. Gonzalez ◽  
Lennell Allen ◽  
Deborah K. Froh

2003 ◽  
Vol 14 (4) ◽  
pp. 1433-1447 ◽  
Author(s):  
Matthias Marti ◽  
Yajie Li ◽  
Elisabeth M. Schraner ◽  
Peter Wild ◽  
Peter Köhler ◽  
...  

Transmission of the protozoan parasite Giardia intestinalis to vertebrate hosts presupposes the encapsulation of trophozoites into an environmentally resistant and infectious cyst form. We have previously shown that cyst wall proteins were faithfully sorted to large encystation-specific vesicles (ESVs), despite the absence of a recognizable Golgi apparatus. Here, we demonstrate that sorting to a second constitutively active pathway transporting variant-specific surface proteins (VSPs) to the surface depended on the cytoplasmic VSP tail. Moreover, pulsed endoplasmic reticulum (ER) export of chimeric reporters containing functional signals for both pathways showed that protein sorting was done at or very soon after export from the ER. Correspondingly, we found that a limited number of novel transitional ER-like structures together with small transport intermediates were generated during encystation. Colocalization of transitional ER regions and early ESVs with coat protein (COP) II and of maturing ESVs with COPI and clathrin strongly suggested that ESVs form by fusion of ER-derived vesicles and subsequently undergo maturation by retrograde transport. Together, the data supported the hypothesis that in Giardia, a primordial secretory apparatus is in operation by which proteins are sorted in the early secretory pathway, and the developmentally induced ESVs carry out at least some Golgi functions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bor Luen Tang

Abstract The early secretory pathway, provisionally comprising of vesicular traffic between the endoplasmic reticulum (ER) and the Golgi apparatus, occurs constitutively in mammalian cells. Critical for a constant supply of secretory and plasma membrane (PM) materials, the pathway is presumably essential for general cellular function and survival. Neurons exhibit a high intensity in membrane dynamics and protein/lipid trafficking, with differential and polarized trafficking towards the somatodendritic and axonal PM domains. Mutations in genes encoding early secretory pathway membrane trafficking machinery components are known to result in neurodevelopmental or neurological disorders with disease manifestation in early life. Here, such rare disorders associated with autosomal recessive mutations in coat proteins, membrane tethering complexes and membrane fusion machineries responsible for trafficking in the early secretory pathway are summarily discussed. These mutations affected genes encoding subunits of coat protein complex I and II, subunits of transport protein particle (TRAPP) complexes, members of the YIP1 domain family (YIPF) and a SNAP receptor (SNARE) family member. Why the ubiquitously present and constitutively acting early secretory pathway machinery components could specifically affect neurodevelopment is addressed, with the plausible underlying disease etiologies and neuropathological mechanisms resulting from these mutations explored.


Sign in / Sign up

Export Citation Format

Share Document