Fluorescence resonance energy transfer as a method for dissecting in vivo mechanisms of transcriptional activation

2006 ◽  
Vol 73 ◽  
pp. 217-224 ◽  
Author(s):  
Sara K. Evans ◽  
David P. Aiello ◽  
Michael R. Green

The first step in transcriptional activation of protein-coding genes involves the assembly on the promoter of a large PIC (pre-initiation complex) comprising RNA polymerase II and a suite of general transcription factors. Transcription is greatly enhanced by the action of promoter-specific activator proteins (activators) that function, at least in part, by increasing PIC formation. Activator-mediated stimulation of PIC assembly is thought to result from a direct interaction between the activator and one or more components of the transcription machinery, termed the ‘target’. The unambiguous identification of direct, physiologically relevant in vivo targets of activators has been a considerable challenge in the transcription field. The major obstacle has been the lack appropriate experimental methods to measure direct interactions with activators in vivo. The development of spectral variants of green fluorescent protein has made it possible to perform FRET (fluorescence resonance energy transfer) analysis in living cells, thereby allowing the detection of direct protein–protein interactions in vivo. Here we discuss how FRET can be used to identify activator targets and to dissect in vivo mechanisms of transcriptional activation.

2004 ◽  
Vol 279 (50) ◽  
pp. 52399-52405 ◽  
Author(s):  
Anne J. Smith ◽  
Mark A. Sanders ◽  
Brian R. Thompson ◽  
Constantine Londos ◽  
Fredric B. Kraemer ◽  
...  

Previousin vitrostudies have established that hormone sensitive lipase (HSL) and adipocyte fatty acid-binding protein (AFABP) form a physical complex that presumably positions the FABP to accept a product fatty acid generated during catalysis. To assess AFABP-HSL interaction within a cellular context, we have used lipocytes derived from 293 cells (C8PA cells) and examined physical association using fluorescence resonance energy transfer. Transfection of C8PA cells with cyan fluorescent protein (CFP)-HSL, yellow fluorescent protein (YFP)-adipocyte FABP, or YFP-liver FABP revealed that under basal conditions each protein was cytoplasmic. In the presence of 20 μmforskolin, CFP-HSL translocated to the triacylglycerol droplet, coincident with BODIPY-FA labeled depots. Fluorescence resonance energy transfer analysis demonstrated that CFP-HSL associated with YFP-adipocyte FABP in both basal and forskolin-treated cells. In contrast, little if any fluorescence resonance energy transfer could be detected between CFP-HSL and YFP-liver FABP. These results suggest that a pre-lipolysis complex containing at least AFABP and HSL exists and that the complex translocates to the surface of the lipid droplet.


2020 ◽  
Vol 10 (10) ◽  
pp. 3508
Author(s):  
Haijun Yu ◽  
Haoxiang Li ◽  
Yao Zhou ◽  
Shengmin Zhou ◽  
Ping Wang

In this paper, a fluorescence resonance energy transfer (FRET)-based sensor for ultra-sensitive detection of H2O2 was developed by utilizing the unique enzymatic properties of peroxiredoxin (Prx) to H2O2. Cyan and yellow fluorescent protein (CFP and YFP) were fused to Prx and mutant thioredoxin (mTrx), respectively. In the presence of H2O2, Prx was oxidized into covalent homodimer through disulfide bonds, which were further reduced by mTrx to form a stable mixed disulfide bond intermediate between CFP-Prx and mTrx-YFP, inducing FRET. A linear quantification range of 10–320 nM was obtained according to the applied protein concentrations and the detection limit (LOD) was determined to be as low as 4 nM. By the assistance of glucose oxidase to transform glucose into H2O2, the CFP-Prx/mTrx-YFP system (CPmTY) was further exploited for the detection of glucose in real sample with good performance, suggesting this CPmTY protein sensor is highly practical.


2007 ◽  
Vol 407 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Michael Russwurm ◽  
Florian Mullershausen ◽  
Andreas Friebe ◽  
Ronald Jäger ◽  
Corina Russwurm ◽  
...  

The intracellular signalling molecule cGMP regulates a variety of physiological processes, and so the ability to monitor cGMP dynamics in living cells is highly desirable. Here, we report a systematic approach to create FRET (fluorescence resonance energy transfer)-based cGMP indicators from two known types of cGMP-binding domains which are found in cGMP-dependent protein kinase and phosphodiesterase 5, cNMP-BD [cyclic nucleotide monophosphate-binding domain and GAF [cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA] respectively. Interestingly, only cGMP-binding domains arranged in tandem configuration as in their parent proteins were cGMP-responsive. However, the GAF-derived sensors were unable to be used to study cGMP dynamics because of slow response kinetics to cGMP. Out of 24 cGMP-responsive constructs derived from cNMP-BDs, three were selected to cover a range of cGMP affinities with an EC50 between 500 nM and 6 μM. These indicators possess excellent specifity for cGMP, fast binding kinetics and twice the dynamic range of existing cGMP sensors. The in vivo performance of these new indicators is demonstrated in living cells and validated by comparison with cGMP dynamics as measured by radioimmunoassays.


Sign in / Sign up

Export Citation Format

Share Document