The role of REST/NRSF in regulating endogenous gene expression

1999 ◽  
Vol 27 (3) ◽  
pp. A125-A125
Author(s):  
I.C. Wood ◽  
M. Mistry ◽  
A. Roopra ◽  
N.J. Buckley
Author(s):  
Nikoleta Kryovrysanaki ◽  
Anthony James ◽  
Martha Tselika ◽  
Eirini Bardani ◽  
Kriton Kalantidis

RNA silencing refers to a conserved eukaryotic process and is regarded as one of the most important processes in plants, with the ability to regulate gene expression both transcriptionally and post-transcriptionally. Different classes of non-coding RNAs (ncRNAs) constitute key components of the RNA silencing pathways and play pivotal roles in modulating various biological processes as well as host-pathogen interactions. One of the most extensively studied classes of ncRNAs are the 20-24 nucleotide (nt) long microRNAs (miRNAs), which are core components of the endogenous gene silencing pathway. miRNAs act as negative regulators of endogenous gene expression either through mRNA-target cleavage, translational inhibition, or DNA methylation, and are inextricably linked to a plethora of developmental processes, such as leaf pattern formation as well as abiotic and biotic stress responses. In this review, we focus on the role of the RNA silencing pathways in the regulation of developmental processes as well as in the plant responses to biotic stress.


2013 ◽  
Vol 54 ◽  
pp. 79-90 ◽  
Author(s):  
Saba Valadkhan ◽  
Lalith S. Gunawardane

Eukaryotic cells contain small, highly abundant, nuclear-localized non-coding RNAs [snRNAs (small nuclear RNAs)] which play important roles in splicing of introns from primary genomic transcripts. Through a combination of RNA–RNA and RNA–protein interactions, two of the snRNPs, U1 and U2, recognize the splice sites and the branch site of introns. A complex remodelling of RNA–RNA and protein-based interactions follows, resulting in the assembly of catalytically competent spliceosomes, in which the snRNAs and their bound proteins play central roles. This process involves formation of extensive base-pairing interactions between U2 and U6, U6 and the 5′ splice site, and U5 and the exonic sequences immediately adjacent to the 5′ and 3′ splice sites. Thus RNA–RNA interactions involving U2, U5 and U6 help position the reacting groups of the first and second steps of splicing. In addition, U6 is also thought to participate in formation of the spliceosomal active site. Furthermore, emerging evidence suggests additional roles for snRNAs in regulation of various aspects of RNA biogenesis, from transcription to polyadenylation and RNA stability. These snRNP-mediated regulatory roles probably serve to ensure the co-ordination of the different processes involved in biogenesis of RNAs and point to the central importance of snRNAs in eukaryotic gene expression.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 354-362 ◽  
Author(s):  
K. Matsuda ◽  
E. Araki ◽  
R. Yoshimura ◽  
K. Tsuruzoe ◽  
N. Furukawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document