scholarly journals Angioplasticity in asthma

2009 ◽  
Vol 37 (4) ◽  
pp. 805-810 ◽  
Author(s):  
Kewal Asosingh ◽  
Serpil C. Erzurum

Plasticity of the lung vasculature is intrinsically more complex than other organs due to the presence of two blood supply systems under different arterial pressures, the pulmonary and bronchial arterial systems. The bronchial and pulmonary circulations may both contribute to vascular remodelling in lungs after injury or inflammation. Vascular remodelling in the airway is a long recognized component in asthma. Growing numbers of reports suggest that a pro-angiogenic milieu is not a consequence of, but rather dictates the chronic inflammation of asthma. The fairly recent discovery of EPCs (endothelial progenitor cells) has enabled us to study the bone-marrow-derived cells that regulate lung vascular plasticity in asthma. This mini review provides a concise synopsis of our present knowledge about vascular plasticity in adult lungs, summarizes our current view of angioplasticity in asthma and highlights yet unresolved areas of potential interest.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Alessandra Petrelli ◽  
Raffaele Di Fenza ◽  
Michele Carvello ◽  
Francesca Gatti ◽  
Antonio Secchi ◽  
...  

Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.


2009 ◽  
Vol 182 (4S) ◽  
pp. 1898-1905 ◽  
Author(s):  
Arun K. Sharma ◽  
Natalie J. Fuller ◽  
Ryan R. Sullivan ◽  
Noreen Fulton ◽  
Partha V. Hota ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Richard Longeras ◽  
Krysten Farjo ◽  
Michael Ihnat ◽  
Jian-Xing Ma

Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells) and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs)). Pigment epithelium-derived factor (PEDF) contains an N-terminal 34-amino acid peptide (PEDF-34) that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR) model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS). OIR significantly increased the number of circulating Tie2-GFP+at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.


2008 ◽  
Vol 215 (1) ◽  
pp. 234-242 ◽  
Author(s):  
Tomoyuki Matsumoto ◽  
Yutaka Mifune ◽  
Atsuhiko Kawamoto ◽  
Ryosuke Kuroda ◽  
Taro Shoji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document