lung repair
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 36)

H-INDEX

26
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Laura A Dada ◽  
Lynn C Welch ◽  
Natalia D Magnani ◽  
Ziyou Ren ◽  
Patricia L Brazee ◽  
...  

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with ARDS secondary to SARS-CoV-2 pneumonia, low tidal volume ventilation to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here, we show that hypercapnia limits β-catenin signaling in alveolar type 2 (AT2) cells, leading to reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα-fibroblasts from those maintaining AT2 progenitor activity and towards those that antagonize β-catenin signaling and limit progenitor function. Activation of β-catenin signaling in AT2 cells, rescues the effects of hypercapnia on proliferation. Inhibition of AT2 proliferation in hypercapnic patients may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier, increasing lung flooding, ventilator dependency and mortality.


2021 ◽  
Author(s):  
Amruta Naik ◽  
Kaitlyn Forrest ◽  
Yasmine Issah ◽  
Utham Valekunja ◽  
Akhilesh B Reddy ◽  
...  

Optimal lung repair and regeneration is essential for recovery from viral infections such as that induced by influenza A virus (IAV). We have previously demonstrated that lung inflammation induced by IAV is under circadian control. However, it is not known if the circadian clock exerts its influence on lung repair and regenerative processes independent of acute inflammation from IAV. Here, we demonstrate for the first time that lung organoids have a functional clock as they mature and that the absence of an intact circadian clock impairs regenerative capacity. Using several models of circadian disruption, we show that with the absence of an intact clock lung proliferation is disrupted. Further, we find that the circadian clock acts through direct control of the Wnt/β-catenin pathway. We speculate, that adding the circadian dimension to the critical process of lung repair and regeneration will lead to novel therapies and improve outcomes. Finally, we use data from UK Biobank to demonstrate at the population level, the role of poor circadian rhythms in mediating negative outcomes following lung infection.


Author(s):  
Heather L. Rossi ◽  
Jorge F. Ortiz-Carpena ◽  
Devon Tucker ◽  
Andrew E. Vaughan ◽  
Nilam S. Mangalmurti ◽  
...  

Author(s):  
Guilian Liao ◽  
Yan Liao ◽  
Duanduan Li ◽  
Zeqin Fu ◽  
Shiduo Wu ◽  
...  

Mesenchymal stromal cells (MSCs) show potential for treating preclinical models of newborn bronchopulmonary dysplasia (BPD), but studies of their therapeutic effectiveness have had mixed results, in part due to the use of different media supplements for MSCs expansion in vitro. The current study sought to identify an optimal culture supplement of umbilical cord-derived MSCs (UC-MSCs) for BPD therapy. In this study, we found that UC-MSCs cultured with human platelet lysate (hPL-UCMSCs) were maintained a small size from Passage 1 (P1) to P10, while UC-MSCs cultured with fetal bovine serum (FBS-UCMSCs) became wide and flat. Furthermore, hPL was associated with lower levels of senescence in UC-MSCs during in vitro expansion compared with FBS, as indicated by the results of β-galactosidase staining and measures of senescence-related genes (CDKN2A, CDKN1A, and mTOR). In addition, hPL enhanced the proliferation and cell viability of the UC-MSCs and reduced their doubling time in vitro. Compared with FBS-UCMSCs, hPL-UCMSCs have a greater potential to differentiate into osteocytes and chondrocytes. Moreover, using hPL resulted in greater expression of Nestin and specific paracrine factors (VEGF, TGF-β1, FGF2, IL-8, and IL-6) in UC-MSCs compared to using FBS. Critically, we also found that hPL-UCMSCs are more effective than FBS-UCMSCs for the treatment of BPD in a rat model, with hPL leading to improvements in survival rate, lung architecture and fibrosis, and lung capillary density. Finally, qPCR of rat lung mRNA demonstrated that hPL-UCMSCs had lower expression levels of inflammatory factors (TNF-α and IL-1β) and a key chemokine (MCP-1) at postnatal day 10, and there was significant reduction of CD68+ macrophages in lung tissue after hPL-UCMSCs transplantation. Altogether, our findings suggest that hPL is an optimal culture supplement for UC-MSCs expansion in vitro, and that hPL-UCMSCs promote lung repair in rat BPD disease.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2145
Author(s):  
Tillie Louise Hackett ◽  
Emmanuel Twumasi Osei

The lung extracellular matrix (ECM) is a complex and dynamic mixture of fibrous proteins (collagen, elastin), glycoproteins (fibronectin, laminin), glycosaminoglycans (heparin, hyaluronic acid) and proteoglycans (perlecan, versican), that are essential for normal lung development and organ health [...]


2021 ◽  
Vol 7 (1) ◽  
pp. 54-62

The outbreak COVID-19 is considered as a revolution in history of biological science. SARS-CoV-2 is a main cause of COVID-19 having resemblance with MERS-CoV and SARS-CoV. The response of host to the infection of SARS-CoV is multiform and strong. Initially, an effective host defense in the lung is affiliated with disease resolution and mild symptoms. The escaping of virus from immune response can lead to damage the alveoli, systematic inflammation, and ineffective lung repair mechanism with associated organ dysfunction. The immunological responses are necessary to fight with the virus and an effective and a safe vaccine is needed to overcome the pandemic. The development of vaccine is progressing fast, billions of dollars committed with more than 200 candidates before even knowing whether a vaccine candidate will succeed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248959
Author(s):  
Chin-Kuo Lin ◽  
Tzu-Hsiung Huang ◽  
Cheng-Ta Yang ◽  
Chung-Sheng Shi

Monocytes and vascular endothelial growth factor (VEGF) have profound effects on tissue injury and repair. In ventilator-induced lung injury (VILI), monocytes, the majority of which are Ly6C+high, and VEGF are known to initiate lung injury. However, their roles in post-VILI lung repair remain unclear. In this study, we used a two-hit mouse model of VILI to identify the phenotypes of monocytes recruited to the lungs during the resolution of VILI and investigated the contributions of monocytes and VEGF to lung repair. We found that the lung-recruited monocytes were predominantly Ly6C+low from day 1 after the insult. Meanwhile, contrary to inflammatory cytokines, pulmonary VEGF decreased upon VILI but subsequently increased significantly on days 7 and 14 after the injury. There was a strong positive correlation between VEGF expression and proliferation of alveolar epithelial cells in lung sections. The expression pattern of VEGF mRNA in lung-recruited monocytes was similar to that of pulmonary VEGF proteins, and the depletion of monocytes significantly suppressed the increase of pulmonary VEGF proteins on days 7 and 14 after VILI. In conclusion, during recovery from VILI, the temporal expression patterns of pulmonary growth factors are different from those of inflammatory cytokines, and the restoration of pulmonary VEGF by monocytes, which are mostly Ly6C+low, is associated with pulmonary epithelial proliferation. Lung-recruited monocytes and pulmonary VEGF may play crucial roles in post-VILI lung repair.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-214986 ◽  
Author(s):  
Jason J Gokey ◽  
John Snowball ◽  
Jenna Green ◽  
Marion Waltamath ◽  
Jillian J Spinney ◽  
...  

ObjectivesIdiopathic pulmonary fibrosis (IPF) primarily affects the aged population and is characterised by failure of alveolar regeneration, leading to loss of alveolar type 1 (AT1) cells. Aged mouse models of lung repair have demonstrated that regeneration fails with increased age. Mouse and rat lung repair models have shown retinoic acid (RA) treatment can restore alveolar regeneration. Herein, we seek to determine the signalling mechanisms that become activated on RA treatment prior to injury, which support alveolar differentiation.DesignPartial pneumonectomy lung injury model and next-generation sequencing of sorted cell populations were used to uncover molecular targets regulating alveolar repair. In vitro organoids generated from epithelial cells of mouse or patient with IPF co-cultured with young, aged or RA-pretreated murine fibroblasts were used to test potential targets.Main outcome measurementsKnown alveolar epithelial cell differentiation markers, including HOPX and AGER for AT1 cells, were used to assess outcome of treatments.ResultsGene expression analysis of sorted fibroblasts and epithelial cells isolated from lungs of young, aged and RA-pretreated aged mice predicted increased platelet-derived growth factor subunit A (PDGFA) signalling that coincided with regeneration and alveolar epithelial differentiation. Addition of PDGFA induced AT1 and AT2 differentiation in both mouse and human IPF lung organoids generated with aged fibroblasts, and PDGFA monoclonal antibody blocked AT1 cell differentiation in organoids generated with young murine fibroblasts.ConclusionsOur data support the concept that RA indirectly induces reciprocal PDGFA signalling, which activates regenerative fibroblasts that support alveolar epithelial cell differentiation and repair, providing a potential therapeutic strategy to influence the pathogenesis of IPF.


Sign in / Sign up

Export Citation Format

Share Document