Membrane microenvironment regulation of carnitine palmitoyltranferases I and II

2011 ◽  
Vol 39 (3) ◽  
pp. 833-837 ◽  
Author(s):  
Khosrow Kashfi ◽  
Randall L. Mynatt ◽  
Edwards A. Park ◽  
George A. Cook

CPT (carnitine palmitoyltransferase) 1 and CPT2 regulate fatty acid oxidation. Recombinant rat CPT2 was isolated from the soluble fractions of bacterial extracts and expressed in Escherichia coli. The acyl-CoA chain-length-specificity of the recombinant CPT2 was identical with that of the purified enzyme from rat liver mitochondrial inner membranes. The Km for carnitine for both the mitochondrial preparation and the recombinant enzyme was identical. In isolated mitochondrial outer membranes, cardiolipin (diphosphatidylglycerol) increased CPT1 activity 4-fold and the Km for carnitine 6-fold. It decreased the Ki for malonyl-CoA inhibition 60-fold, but had no effect on the apparent Km for myristoyl-CoA. Cardiolipin also activated recombinant CPT2 almost 4-fold, whereas phosphatidylglycerol, phosphatidylserine and phosphatidylcholine activated the enzyme 3-, 2- and 2-fold respectively. Most of the recombinant CPT2 was found to have substantial interaction with cardiolipin. A model is proposed whereby cardiolipin may hold the fatty-acid-oxidizing enzymes in the active functional conformation between the mitochondrial inner and outer membranes in conjunction with the translocase and the acyl-CoA synthetase, thus combining all four enzymes into a functional unit.

1997 ◽  
Vol 83 (6) ◽  
pp. 1917-1922 ◽  
Author(s):  
C. Adrian Hutber ◽  
B. B. Rasmussen ◽  
W. W. Winder

Hutber, C. Adrian, B. B. Rasmussen, and W. W. Winder.Endurance training attenuates the decrease in skeletal muscle malonyl-CoA with exercise. J. Appl. Physiol. 83(6): 1917–1922, 1997.—Muscle malonyl-CoA has been postulated to regulate fatty acid metabolism by inhibiting carnitine palmitoyltransferase 1. In nontrained rats, malonyl-CoA decreases in working muscle during exercise. Endurance training is known to increase a muscle’s reliance on fatty acids as a substrate. This study was designed to investigate whether the decline in malonyl-CoA with exercise would be greater in trained than in nontrained muscle, thereby allowing increased fatty acid oxidation. After 6–10 wk of endurance training (2 h/day) or treadmill habituation (5–10 min/day), rats were killed at rest or after running up a 15% grade at 21 m/min for 5, 20, or 60 min. Training attenuated the exercise-induced drop in malonyl-CoA and prevented the exercise-induced increase in the constant for citrate activation of acetyl-CoA carboxylase in the red quadriceps muscle of rats run for 20 and 60 min. Hence, contrary to expectations, the decrease in malonyl-CoA was less in trained than in nontrained muscle during a single bout of prolonged submaximal exercise.


1994 ◽  
Vol 72 (10) ◽  
pp. 1101-1109 ◽  
Author(s):  
Gary D. Lopaschuk ◽  
Jim Gamble

It has long been known that most of the energy production in the heart is derived from the oxidation of fatty acids. The other important sources of energy are the oxidation of carbohydrates and, to a lesser extent, ATP production from glycolysis. The contribution of these pathways to overall ATP production can vary dramatically, depending to a large extent on the carbon substrate profile delivered to the heart, as well as the presence or absence of underlying pathology within the myocardium. Despite extensive research devoted to the study of the individual pathways of energy substrate metabolism, relatively few studies have examined the integrated regulation between carbohydrate and fatty acid oxidation in the heart. While the mechanisms by which fatty acids inhibit carbohydrate oxidation (i.e., the Randle cycle) have been characterized, much less is known about how carbohydrates regulate fatty acid oxidation in the heart. It is clear that an increase in intramitochondrial acetyl-CoA derived from carbohydrate oxidation (via the pyruvate dehydrogenase complex) can downregulate β-oxidation of fatty acids, but it is not clear how fatty acid acyl group entry into the mitochondria is downregulated when carbohydrate oxidation increases. Recent interest in our laboratory has focused on the involvement of acetyl-CoA carboxylase (ACC) in this process. While it has been known for some time that malonyl-CoA does exist in heart tissue, and that it is a potent inhibitor of carnitine palmitoyltransferase 1 (CPT 1), it has only recently been demonstrated that an isoenzyme of ACC exists in the heart that is a potential source of malonyl-CoA. These findings led to the hypothesis that ACC may be an important regulator of myocardial fatty acid oxidation. We have recently provided evidence that heart ACC, via the production of malonyl-CoA, can regulate fatty acid oxidation. We believe that ACC represents a key enzyme in a feedback loop that decreases acyl-CoA transport into the mitochondria when carbohydrate oxidation rates are increased. It is possible that ACC may represent a novel and potentially important site for pharmacological intervention in pathological situations characterized by abnormal fatty acid metabolism. This review provides a brief overview of the regulation of myocardial metabolism followed by our recent studies that support the hypothesis that ACC has an important role in regulating the balance between carbohydrate and lipid metabolism in the heart.Key words: fatty acids, glucose, malonyl-CoA, carnitine palmitoyltransferase 1, myocardial ischemia.


1996 ◽  
Vol 270 (4) ◽  
pp. G701-G707 ◽  
Author(s):  
M. Guzman ◽  
G. Velasco ◽  
J. Castro

Incubation of rat hepatocytes with extracellular ATP inhibited acetyl-CoA carboxylase (ACC) activity and fatty acid synthesis de novo, with a concomitant decrease of intracellular malonyl-CoA concentration. However, both carnitine O-palmitoyltransferase I (CPT-I) activity and ketogenesis from palmitate were inhibited in parallel by extracellular ATP. The inhibitory effect of extracellular ATP on ACC and CPT-I activities was not evident in Ca2+ -depleted hepatocytes. Incubation of hepatocytes with thapsigargin, 2,5-di-(t-butyl)-1,4-benzohydroquinone (BHQ), or A-23187, compounds that increase cytosolic free Ca2+ concentration ([Ca2+]i), depressed ACC activity, whereas CPT-I activity was unaffected. The phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) increased ACC activity, whereas it decreased CPT-I activity in a nonaddictive manner with respect to extracellular ATP. The inhibitory effect of extracellular ATP on ACC activity was also evident in the presence of bisindolyl-maleimide, a specific inhibitor of protein kinase C (PKC), whereas this compound abolished the extracellular ATP-mediated inhibition of CPT-I. In addition, the PMA-induced inhibition of CPT-I was not potentiated by thapsigargin, BHQ, or A-23187. Results thus show 1) that the intracellular concentration of malonyl-CoA is not the factor responsible for the inhibition of hepatic long-chain fatty acid oxidation by extracellular ATP, and 2) that the inhibition of ACC by extracellular ATP may be mediated by an elevation of [Ca2+]i, whereas CPT-I may be inhibited by extracellular ATP through a PKC-dependent mechanism.


1989 ◽  
Vol 257 (4) ◽  
pp. R822-R828 ◽  
Author(s):  
M. J. Azain ◽  
J. A. Ontko

These studies were undertaken to further characterize and explain the differences in hepatic fatty acid metabolism between lean and obese Zucker rats. It was shown that the rate of palmitate or octanoate oxidation and the inhibition of palmitate oxidation by malonyl CoA in mitochondria isolated from lean and obese Zucker rats were similar. Cytochrome oxidase activity was similar in lean and obese rat livers. It was found that the addition of cytosol from the obese rat liver inhibited palmitate oxidation by 20-30% in mitochondria isolated from lean or obese rat livers and thus reproduced the conditions observed in the intact cell. Increased concentrations of metabolites such as malonyl CoA and glycerophosphate in the liver of the obese rat are likely contributors to this inhibitory effect. These results are extrapolated to the intact cell and suggest that decreased hepatic fatty acid oxidation in the obese rat can be accounted for by cytosolic influences on the mitochondria. The decreased rate of fatty acid oxidation observed in the intact hepatocyte or perfused liver cannot be explained by a defect in the capacity of mitochondria to oxidize substrate or by a decrease in mitochondrial number in the obese rat liver.


2005 ◽  
Vol 98 (4) ◽  
pp. 1221-1227 ◽  
Author(s):  
D. S. Rubink ◽  
W. W. Winder

AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and inactivate skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 and fatty acid oxidation. Contraction-induced activation of AMPK with subsequent phosphorylation/inactivation of ACC has been postulated to be responsible in part for the increase in fatty acid oxidation that occurs in muscle during exercise. These studies were designed to answer the question: Does phosphorylation of ACC by AMPK make palmitoyl-CoA a more effective inhibitor of ACC? Purified rat muscle ACC was subjected to phosphorylation by AMPK. Activity was determined on nonphosphorylated and phosphorylated ACC preparations at acetyl-CoA concentrations ranging from 2 to 500 μM and at palmitoyl-CoA concentrations ranging from 0 to 100 μM. Phosphorylation resulted in a significant decline in the substrate saturation curve at all palmitoyl-CoA concentrations. The inhibitor constant for palmitoyl-CoA inhibition of ACC was reduced from 1.7 ± 0.25 to 0.85 ± 0.13 μM as a consequence of phosphorylation. At 0.5 mM citrate, ACC activity was reduced to 13% of control values in response to the combination of phosphorylation and 10 μM palmitoyl-CoA. Skeletal muscle ACC is more potently inhibited by palmitoyl-CoA after having been phosphorylated by AMPK. This may contribute to low-muscle malonyl-CoA values and increasing fatty acid oxidation rates during long-term exercise when plasma fatty acid concentrations are elevated.


1999 ◽  
Vol 277 (4) ◽  
pp. E772-E777 ◽  
Author(s):  
Gary W. Goodwin ◽  
Heinrich Taegtmeyer

We tested the hypothesis that the level of malonyl-CoA, as well as the corresponding rate of total fatty acid oxidation of the heart, is regulated by the opposing actions of acetyl-CoA carboxylase (ACC) and malonyl-CoA decarboxylase (MCD). We used isolated working rat hearts perfused under physiological conditions. MCD in heart homogenates was measured specifically by14CO2production from [3-14C]malonyl-CoA, and ACC was measured specifically based on the portion of total carboxylase that is citrate sensitive. Increased heart work (1 μM epinephrine + 40% increase in afterload) elicited a 40% increase in total β-oxidation of exogenous plus endogenous lipids, accompanied by a 33% decrease in malonyl-CoA. The basal activity and citrate sensitivity of ACC (reflecting its phosphorylation state) and citrate content were unchanged. AMP levels were also unchanged. MCD activity, when measured at a subsaturating concentration of malonyl-CoA (50 μM), was increased by 55%. We conclude that physiological increments in AMP during the work transition are insufficient to promote ACC phosphorylation by AMP-stimulated protein kinase. Rather, increased fatty acid oxidation results from increased malonyl-CoA degradation by MCD.


2001 ◽  
Vol 281 (4) ◽  
pp. H1561-H1567 ◽  
Author(s):  
Sarah L. Longnus ◽  
Richard B. Wambolt ◽  
Rick L. Barr ◽  
Gary D. Lopaschuk ◽  
Michael F. Allard

We tested the hypothesis that myocardial substrate supply regulates fatty acid oxidation independent of changes in acetyl-CoA carboxylase (ACC) and 5′-AMP-activated protein kinase (AMPK) activities. Fatty acid oxidation was measured in isolated working rat hearts exposed to different concentrations of exogenous long-chain (0.4 or 1.2 mM palmitate) or medium-chain (0.6 or 2.4 mM octanoate) fatty acids. Fatty acid oxidation was increased with increasing exogenous substrate concentration in both palmitate and octanoate groups. Malonyl-CoA content only rose as acetyl-CoA supply from octanoate oxidation increased. The increases in octanoate oxidation and malonyl-CoA content were independent of changes in ACC and AMPK activity, except that ACC activity increased with very high acetyl-CoA supply levels. Our data suggest that myocardial substrate supply is the primary mechanism responsible for alterations in fatty acid oxidation rates under nonstressful conditions and when substrates are present at physiological concentrations. More extreme variations in substrate supply lead to changes in fatty acid oxidation by the additional involvement of intracellular regulatory pathways.


Sign in / Sign up

Export Citation Format

Share Document