A ‘tad’ of hope in the fight against airway disease

2020 ◽  
Vol 48 (5) ◽  
pp. 2347-2357
Author(s):  
Eamon Dubaissi

Xenopus tadpoles have emerged as a powerful in vivo model system to study mucociliary epithelia such as those found in the human airways. The tadpole skin has mucin-secreting cells, motile multi-ciliated cells, ionocytes (control local ionic homeostasis) and basal stem cells. This cellular architecture is very similar to the large airways of the human lungs and represents an easily accessible and experimentally tractable model system to explore the molecular details of mucociliary epithelia. Each of the cell types in the tadpole skin has a human equivalent and a conserved network of genes and signalling pathways for their differentiation has been discovered. Great insight into the function of each of the cell types has been achieved using the Xenopus model and this has enhanced our understanding of airway disease. This simple model has already had a profound impact on the field but, as molecular technologies (e.g. gene editing and live imaging) continue to develop apace, its use for understanding individual cell types and their interactions will likely increase. For example, its small size and genetic tractability make it an ideal model for live imaging of a mucociliary surface especially during environmental challenges such as infection. Further potential exists for the mimicking of human genetic mutations that directly cause airway disease and for the pre-screening of drugs against novel therapeutic targets.

2015 ◽  
Vol 26 (23) ◽  
pp. 4183-4186 ◽  
Author(s):  
Angel Morrow ◽  
Terry Lechler

Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi217-vi217
Author(s):  
Joseph Lagas ◽  
Lihua Yang ◽  
Oren Becher ◽  
Joshua Rubin

Abstract Diffuse Intrinsic Pontine Glioma (DIPG) is a devastating pediatric high-grade glioma that occurs in the brainstem with a median survival of less than 1 year. A greater understanding of the early tumorigenic events is essential for the development of effective therapeutics. DIPG is characterized by founder mutations in histone H3, either H3.1K27M or H3.3K27M. These mutations cause global hypomethylation, resulting in aberrant gene expression. It is unknown how this mechanism contributes to tumorigenesis. Interestingly, H3.1K27M DIPG show an increased incidence in females, whereas H3.3K27M DIPG shows no sex difference. This illustrates that the tumorigenic potential of H3.1K27M may be different between the sexes. Few models of DIPG incorporate the study of H3.1K27M despite the fact that it represents a unique opportunity to obtain valuable information on the tumorigenesis of DIPG through the study of the sex difference. Thus, we have created an in vitro and in vivo model system for H3.1K27M DIPG utilizing the RCAS mouse model system. This system utilizes RCAS vectors and a RCAS-ntva transgenic mouse line to deliver specific mutations to nestin expressing cells in the brainstem, including oligodendrocyte progenitor cells (OPCs), the predicted cell of origin. Delivering H3.1K27M, ACVR1 R206H, and PDGFaa at postnatal day 7 produces DIPG-like tumors in vivo, confirmed by H and E staining, between 60 – 110 days post injection. Additionally, confirmed through immunofluorescence staining, we can isolate a pure population of OPCs via immunopanning and infect them with RCAS vectors in vitro to produce stable expression of H3.1K27M. Introduction of H3.1K27M alone into male and female OPC cultures provides an opportunity to compare the early tumorigenic effects of H3.1K27M between the sexes in vitro. These results demonstrate that we have created an in vitro and in vivo H3.1K27M DIPG model system for the study of sex differences and tumorigenesis in DIPG.


2010 ◽  
Vol 31 (1) ◽  
pp. 136-136
Author(s):  
Michelle L. Sugrue ◽  
Kristen R. Vella ◽  
Crystal Morales ◽  
Marisol E. Lopez ◽  
Anthony N. Hollenberg

ABSTRACT The expression of the TRH gene in the paraventricular nucleus (PVH) of the hypothalamus is required for the normal production of thyroid hormone (TH) in rodents and humans. In addition, the regulation of TRH mRNA expression by TH, specifically in the PVH, ensures tight control of the set point of the hypothalamic-pituitary-thyroid axis. Although many studies have assumed that the regulation of TRH expression by TH is at the level of transcription, there is little data available to demonstrate this. We used two in vivo model systems to show this. In the first model system, we developed an in situ hybridization (ISH) assay directed against TRH heteronuclear RNA to measure TRH transcription directly in vivo. We show that in the euthyroid state, TRH transcription is present both in the PVH and anterior/lateral hypothalamus. In the hypothyroid state, transcription is activated in the PVH only and can be shut off within 5 h by TH. In the second model system, we employed transgenic mice that express the Cre recombinase under the control of the genomic region containing the TRH gene. Remarkably, TH regulates Cre expression in these mice in the PVH only. Taken together, these data affirm that TH regulates TRH at the level of transcription in the PVH only and that genomic elements surrounding the TRH gene mediate its regulation by T3. Thus, it should be possible to identify the elements within the TRH locus that mediate its regulation by T3 using in vivo approaches.


2012 ◽  
Author(s):  
Paul Sirajuddin ◽  
Sudeep Das ◽  
Lymor Ringer ◽  
Patricia Salinas ◽  
Olga Rodriguez ◽  
...  

2013 ◽  
Vol 133 (9) ◽  
pp. 2180-2190 ◽  
Author(s):  
Ruben Postel ◽  
Coert Margadant ◽  
Boris Fischer ◽  
Maaike Kreft ◽  
Hans Janssen ◽  
...  
Keyword(s):  

Mouse embryo cells induced to differentiate with the demethylating agent 5- azacytidine represent an excellent model system to investigate the molecular control of development. Clonal derivatives of 10T1/2 cells that have become determined to the myogenic or adipogenic lineages can be isolated from the multipotential parental line after drug treatment. These determined derivatives can be cultured indefinitely and will differentiate into end-stage phenotypes on appropriate stimulation. A gene called Myo D1, recently isolated from such a myoblast line, will confer myogenesis when expressed in 10T1/2 or other cell types (Davis et al. 1987). The cDNA for Myo D1 contains a large number of CpG sequences and the gene is relatively methylated in 10T1/2 cells and an adipocyte derivative, but is demethylated in myogenic derivatives. Myo D1 may therefore be subject to methylation control in vitro . On the other hand, preliminary observations suggest that Myo D1 is not methylated at CCGG sites in vivo so that a de novo methylation event may have occurred in vitro . These observations may have significance in the establishment of immortal cell lines and tumours.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 793-801 ◽  
Author(s):  
Michelle L. Sugrue ◽  
Kristen R. Vella ◽  
Crystal Morales ◽  
Marisol E. Lopez ◽  
Anthony N. Hollenberg

The expression of the TRH gene in the paraventricular nucleus (PVH) of the hypothalamus is required for the normal production of thyroid hormone (TH) in rodents and humans. In addition, the regulation of TRH mRNA expression by TH, specifically in the PVH, ensures tight control of the set point of the hypothalamic-pituitary-thyroid axis. Although many studies have assumed that the regulation of TRH expression by TH is at the level of transcription, there is little data available to demonstrate this. We used two in vivo model systems to show this. In the first model system, we developed an in situ hybridization (ISH) assay directed against TRH heteronuclear RNA to measure TRH transcription directly in vivo. We show that in the euthyroid state, TRH transcription is present both in the PVH and anterior/lateral hypothalamus. In the hypothyroid state, transcription is activated in the PVH only and can be shut off within 5 h by TH. In the second model system, we employed transgenic mice that express the Cre recombinase under the control of the genomic region containing the TRH gene. Remarkably, TH regulates Cre expression in these mice in the PVH only. Taken together, these data affirm that TH regulates TRH at the level of transcription in the PVH only and that genomic elements surrounding the TRH gene mediate its regulation by T3. Thus, it should be possible to identify the elements within the TRH locus that mediate its regulation by T3 using in vivo approaches.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 52-52 ◽  
Author(s):  
Peter Ebeling ◽  
Jan Duerig ◽  
Florian Grabellus ◽  
Ulrich Duehrsen ◽  
Siegfried Seeber ◽  
...  

Abstract In contrast to normal hematopoiesis and acute leukemias, research in CLL still is hampered by the lack of a reliable in vivo model for primary B-CLL. We here report highly reproducible engraftment of B-CLL cells, when 1x10^8 MNC derived from the peripheral blood of CLL patients were transplanted i.v and i.p. into NOD/SCID mice. So far, 14 different CLL samples were investigated in 41 mice. At weeks 4, 8 or 12 mice were sacrificed and bone marrow (BM), spleen, and peritoneal fluid (PF) were analyzed by FACS for human CD19/CD5/CD23/CD45 (B-CLL) cells and CD45/CD3/CD5 (T) cells. Additionally, HE- and immunostaining was performed on spleen sections. Analysis at week 4 revealed engraftment in NOD/SCID mice for 13/14 samples (spleen: 13/14, BM: 4/14, PF: 12/14). B-CLL cells were observed predominantly in the spleen (8.9±2.4% or 9.1±4.4x10^5 cells) and PF (19.0±4.4% or 3.4±1.8x10^5 cells) with much lower engraftment in BM (0.6±0.3% or 0.1±0.1x10^5 cells). Detection of B-CLL cells in peripheral blood could be obtained in 3/14 experiments. Also substantial engraftment of human T-cells was observed in 13/14 experiments (spleen: 13/14, BM: 8/14, PF: 11/14). T-cells engraftment was highest in the spleen (23.8±9.8% or 28.7±13.1x10^5 cells) and somewhat lower in PF (16.4±8.2% or 3.0±1.6x10^5 cells) and BM (7.3±3.8% or 2.9±1.1x10^5 cells). Subpopulation analysis revealed a CD4+ phenotype in 65, 59 and 72 % of T-cells within spleen, PF and BM, respectively. Noteworthy, immunohistological analysis of HE stained spleen sections of engrafted animals revealed a pseudofollicular infiltration with human CD45LCA+ cells along splenic arterioles. Within these pseudofollicles human B-CLL but also CD3+ T-cells were detected. Contribution of B-CLL and T-cells to individual follicles was highly variable ranging from 5–95% for both cell types. When engraftment was analysed separately for the i.p and the i.v. route, engraftment of transplanted cells in PF seemed to be depended on the i.p. route whereas splenic engraftment was obtained following i.v. as well as i.p. injection. Sustained B-CLL engraftment was seen after 8 weeks (spleen: 3.1±1.4% or 7.3±3.1x10^5 total cells; PF: 57.6±23.3% or 1.0±0.5x10^5 cells; n=3 mice) and 12 weeks (spleen: 1.4±1.3% or 0.3±0.3x10^5 cells; PF: 10.2±7.3% or 0.5±0.5x10^5 cells; n=2 mice). Thus, we have shown efficient engraftment of human B-CLL cells in the spleen and PF of NOD/SCID mice. This in vivo model should significantly help to understand B-CLL biology and to test novel therapeutic approaches. The observed pseudofolicular pattern of splenic infiltration supports the theory of T-cells creating a “microenvironment” sustaining the growth of the leukemic B cell clone.


Sign in / Sign up

Export Citation Format

Share Document