Oxalate Absorption and Postprandial Urine Supersaturation in An Experimental Human Model of Absorptive Hypercalciuria

1984 ◽  
Vol 67 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Stephen B. Erickson ◽  
Kerry Cooper ◽  
Arthur E. Broadus ◽  
Lynwood H. Smith ◽  
Peter G. Werness ◽  
...  

1. The effect of 1,25-dihydroxyvitamin D [1,25-(OH)2D] on dietary oxalate absorption and postprandial urine supersaturation with calcium oxalate was determined in 11 normal subjects. 2. 1,25-(OH)2D increased the urinary excretion of orally administered [14C]oxalate in the 8 h period after a liquid meal containing 1.875 mmol of calcium and 0.83 mmol of oxalate (P < 0.01), and during a 48 h period when the subjects ingested a diet containing 25 mmol of calcium and 3.3 mmol of oxalate/day (P < 0.01); however, 1,25-(OH)2D administration had no effect on [14C]oxalate excretion when calcium was removed from the liquid meal. 3. 1,25-(OH)2D increased 24 h urinary oxalate excretion from 28.7 ± 2.1 mmol/mol of creatinine to 36.8 ± 2.6 mmol/mol of creatinine (P < 0.05) on the 10 mmol/day calcium diet and from 26.4 ± 2.9 to 33.2 ± 2.2 mmol/mol of creatinine (P < 0.1) on the 25 mmol/day calcium diet. 4. A linear correlation (r = 0.72) was found between plasma 1,25-(OH)2D levels and urinary [14C]oxalate excretion after the liquid meal. 5. 1,25-(OH)2D administration produced postprandial supersaturation of urine with calcium oxalate and calcium oxalate crystalluria. 6. These studies suggest that 1,25-(OH)2D increases oxalate absorption (and urinary excretion) by increasing calcium absorption, which results in less binding of calcium to oxalate in the intestine; therefore more oxalate is available for absorption. The combined effect of increased calcium and oxalate absorption results in postprandial supersaturation of urine with calcium oxalate, with resultant crystalluria.

1974 ◽  
Vol 46 (3) ◽  
pp. 357-367 ◽  
Author(s):  
A. Hodgkinson

1. The daily excretion of oxalate, calcium, magnesium and creatinine was determined in fifty-two normal men and sixty-five male patients with calcium oxalate-containing renal stones. 2. Direct relationships were found between calcium and oxalate excretion, magnesium and oxalate excretion and calcium and magnesium excretion in both normal subjects and stone-formers. The significance of these relationships is discussed. 3. The mean excretion of calcium and oxalate was significantly higher in the stone-formers, compared with the controls, both calcium and oxalate excretion being raised by about 20%. 4. The effect of oral ingestion of glucose and casein on the rate of excretion of calcium, magnesium, oxalate and phosphate was examined. Glucose increased the rate of calcium and magnesium excretion but had no effect on oxalate excretion and suppressed phosphate excretion. Casein also increased calcium excretion but had little or no effect on magnesium or oxalate excretion, and it increased phosphate excretion. 5. The association of high calcium excretion with high oxalate excretion, in both normal subjects and stone-formers, results in a high degree of supersaturation of the urine with respect to calcium oxalate. The implication of these findings with respect to the cause and treatment of calcium oxalate stones is discussed.


1972 ◽  
Vol 43 (1) ◽  
pp. 91-99 ◽  
Author(s):  
R. W. Marshall ◽  
M. Cochran ◽  
A. Hodgkinson

1. The short-term effects of different intakes of calcium and oxalic acid on the urinary excretion of these substances was studied in eight normal men and eight men with a history of calcium-containing renal stones. 2. The effect of dietary oxalate on urine oxalate depended partly upon the calcium intake. Thus, on a normal calcium intake an increase in oxalate intake caused an increase in oxalate excretion that corresponded to 3·6% of the additional dietary oxalate; on a low calcium diet, however, the increase corresponded to 8·1%. 3. A decrease in daily calcium intake from 1000 to 250 mg caused a fall in calcium excretion averaging 150 mg/day in the patients and 60 mg/day in the controls but this was accompanied by average rises of 10 and 7 mg/day respectively in oxalate excretion, with the result that the calcium oxalate activity products remained almost unchanged. 4. A decrease in oxalate as well as calcium intake resulted in a fall in calcium excretion that was not accompanied by a rise in oxalate excretion, and there was a statistically significant fall in the calcium oxalate activity product in both the patients and normal subjects.


1997 ◽  
Vol 93 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Piergiorgio Messa ◽  
Martino Marangella ◽  
Luisa Paganin ◽  
Mara Codardini ◽  
Aldo Cruciatti ◽  
...  

1. Dietary calcium restriction, an efficient practice in reducing urinary calcium excretion, has been reported to induce either an increase or no change in oxalate excretion, questioning its use in hypercalciuric stone-forming patients. In addition, calcium restriction has been previously demonstrated to induce other urinary changes which might influence the relative supersaturation of calcium oxalate. So the overall effect of calcium deprivation on the relative supersaturation of calcium oxalate is unpredictable. 2. The aim of the study was to evaluate the effect of dietary calcium restriction on the relative supersaturation of calcium oxalate in the urine of stone-forming patients utilizing a computer methodology which takes into account the main soluble complex species of oxalate. 3. We studied 34 stone-forming patients on both a free-choice diet, whose Ca and oxalate content (24 and 1.2 mmol respectively) was assessed by dietary inquiry, and after 30 days on a prescribed low-calcium and normal oxalate diet (11 and 1.1 mmol respectively). Under both conditions, the excretion of the main urinary parameters related to dietary composition, electrolytes, oxalate and daily citrate urinary excretion, were measured. The relative supersaturation of calcium oxalate was calculated by means of an iterative computer method which takes into account the main soluble complex species on which the solubility of calcium oxalate is dependent. In addition, intact parathyroid hormone and 1,25-dihydroxyvitamin D blood levels were also evaluated. In 13 of the patients intestinal calcium absorption was evaluated during both a free- and a low-calcium diet, utilizing kinetics methodology. 4. The low-calcium diet induced, together with an expected reduction of calcium excretion, a marked increase in oxalate urinary output. This finding was independent of the presence or otherwise of hypercalciuria and of the serum levels of parathyroid hormone and vitamin D. Intestinal calcium absorption was also stimulated by calcium deprivation and its levels were well correlated with oxalate excretion. Minor changes in magnesium and citrate excretion were also observed. The overall effect on the relative supersaturation of calcium oxalate consisted in a substantial increase in this parameter during the low-calcium diet. 5. In conclusion, our data reinforce the concept that dietary calcium restriction has potentially deleterious effects on lithogenesis, by increasing the relative supersaturation of calcium oxalate.


1979 ◽  
Vol 65 (3) ◽  
pp. 143-146
Author(s):  
M. A. Macleod ◽  
N. J. Blacklock

AbstractWith evidence of induction of increased urinary excretion of calcium by the ingestion of glucose and sucrose there is the theoretical possibility in these circumstances of at least a transient negative calcium balance. In this study the ingestion of glucose or glucose equivalent was found to stimulate 47Ca absorption from the intestine both in normal subjects and in idiopathic calcium stone formers. This induced increase in the rate of 47Ca absorption by glucose can be negated by the addition of crude fibre in the form of wheat bran.


1981 ◽  
Vol 27 (10) ◽  
pp. 1682-1685 ◽  
Author(s):  
H G Tiselius ◽  
C Ahlstrand ◽  
B Lundström ◽  
M A Nilsson

Abstract Intestinal absorption of oxalate can be judged from the urinary excretion of orally administered [14C]oxalate. Fifteen normal subjects, 21 patients with "idiopathic" calcium oxalate stone disease and a high oxalate excretion, four patients operated with ileocecal resection, and seven patients operated with jejunoileal bypass were so investigated. We saw no significant difference in the amount of isotope excreted by normal subjects and idiopathic stone formers; 13.6% (SD 5.9%) and 14.4% (SD 6.5%), respectively, of the administered dose was accounted for in the urine. The patients with resection or bypass showed a quite different pattern of isotope excretion, and 18.3% (SD 7.0%) and 36.8% (SD 14.0%), respectively, of the isotope was accounted for in the urine.


1989 ◽  
Vol 35 (1) ◽  
pp. 23-28 ◽  
Author(s):  
D M Cowley ◽  
B C McWhinney ◽  
J M Brown ◽  
A H Chalmers

Abstract Studies in 24 recurrent oxalate stone-formers have shown that values for urinary calcium excretion for this group on at-home diets vary significantly (P less than 0.001) more than values for creatinine excretions. By placing stone-formers on controlled in-hospital diets and measuring their calcium excretions, we were able to predict probable outpatient hypercalciuria (greater than 7.5 mmol/day) with a sensitivity of 95% and a specificity of 95%. In this study, the renal loss of calcium during low-calcium diets was proportional to the absorptive hypercalciuria during high-calcium diets. Calcium loading experiments in fasted stone-formers and normal subjects indicated that citrate, at citrate:calcium molar ratios ranging from 0.12 to 1, stimulated urinary calcium excretion more than did calcium carbonate loading alone. In addition, citrate also significantly (P less than 0.05) increased the excretion of urinary oxalate by two normal subjects for a given load of calcium oxalate. Malabsorption of citrate and possibly other hydroxycarboxylic acids may thus predispose to oxalate nephrolithiasis by promoting calcium and oxalate absorption.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 62
Author(s):  
Joseph J. Crivelli ◽  
Tanecia Mitchell ◽  
John Knight ◽  
Kyle D. Wood ◽  
Dean G. Assimos ◽  
...  

Kidney stone disease is increasing in prevalence, and the most common stone composition is calcium oxalate. Dietary oxalate intake and endogenous production of oxalate are important in the pathophysiology of calcium oxalate stone disease. The impact of dietary oxalate intake on urinary oxalate excretion and kidney stone disease risk has been assessed through large cohort studies as well as smaller studies with dietary control. Net gastrointestinal oxalate absorption influences urinary oxalate excretion. Oxalate-degrading bacteria in the gut microbiome, especially Oxalobacter formigenes, may mitigate stone risk through reducing net oxalate absorption. Ascorbic acid (vitamin C) is the main dietary precursor for endogenous production of oxalate with several other compounds playing a lesser role. Renal handling of oxalate and, potentially, renal synthesis of oxalate may contribute to stone formation. In this review, we discuss dietary oxalate and precursors of oxalate, their pertinent physiology in humans, and what is known about their role in kidney stone disease.


1965 ◽  
Vol 50 (1) ◽  
pp. 131-144 ◽  
Author(s):  
P. Mauvais-Jarvis ◽  
M. F. Jayle ◽  
J. Decourt ◽  
J. Louchart ◽  
J. Truffert

ABSTRACT Normal subjects and hirsute women with micropolycystic ovaries were treated with ethinyl-oestrenol + 3-methoxy-ethinyl-oestradiol (Lyndiol®), in view of studying the action of this compound on the production of androgens and on the urinary excretion of their metabolites. In normal men, the production of testosterone and the excretion of androsterone and aetiocholanolone are suppressed, whereas the excretion of other 17-ketosteroids and the production of dehydroepiandrosterone sulphate are unchanged. Moreover, the luteinizing hormone activity (LH) in plasma is depressed. It seems that the preparation inhibits specifically the testicular androgen production, by suppressing the hypothalamo-hypophyseal control of LH. Testosterone production and urinary 17-ketosteroid excretion are modified in the same way in women with Stein-Leventhal's syndrome. Physiopathological and therapeutical implications which come from these results are discussed.


1966 ◽  
Vol 53 (2) ◽  
pp. 177-188 ◽  
Author(s):  
P. Lund-Johansen ◽  
T. Thorsen ◽  
K. F. Støa

ABSTRACT A comparison has been made between (A), a relatively simple method for the measurement of aldosterone secretion rate, based on paper chromatography and direct densitometry of the aldosterone spot and (B) a more elaborate isotope derivative method. The mean secretion rate in 9 normal subjects was 112 ± 26 μg per 24 hours (method A) and 135 ± 35 μg per 24 hours (method B). The »secretion rate« in one adrenalectomized subject after the intravenous injection of 250 μg of aldosterone was 230 μg per 24 hours (method A) and 294 μg per 24 hours (method B). There was no significant difference in the mean values, and correlation between the two methods was good (r = 0.80). It is concluded that the densitometric method is suitable for clinical purposes as well as research, being more rapid and less expensive than the isotope derivative method. Method A also measures the urinary excretion of the aldosterone 3-oxo-conjugate, which is of interest in many pathological conditions. The densitometric method is obviously the less sensitive and a prerequisite for its use is an aldosterone secretion of 20—30 μg per 24 hours. Lower values are, however, rare in adults.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiqing Zhang ◽  
Sanjay Kumar ◽  
Muthuvel Jayachandran ◽  
Loren P. Herrera Hernandez ◽  
Stanley Wang ◽  
...  

Abstract Backgrounds: Previous studies have demonstrated that excretion of urinary extracellular vesicles (EVs) from different nephron segments differs between kidney stone formers and non-stone formers (NSFs), and could reflect pathogenic mechanisms of urinary stone disease. In this study we quantified selected populations of specific urinary EVs carrying protein markers of immune cells and calcium/phosphorus physiology in calcium oxalate stone formers (CSFs) compared to non-stone formers (NSFs). Methods Biobanked urine samples from CSFs (n = 24) undergoing stone removal surgery and age- and sex- matched NSFs (n = 21) were studied. Urinary EVs carrying proteins related to renal calcium/phosphorus physiology (phosphorus transporters (PiT1 and PiT2), Klotho, and fibroblast growth factor 23 (FGF23); markers associated with EV generation (anoctamin-4 (ANO4) and Huntington interacting protein 1 (HIP1)), and markers shed from activated immune cells were quantified by standardized and published method of digital flow cytometry. Results Urine excretion of calcium, oxalate, phosphorus, and calcium oxalate supersaturation (SS) were significantly higher in CSFs compared to NSFs (P < 0.05). Urinary excretion of EVs with markers of total leukocytes (CD45), neutrophils (CD15), macrophages (CD68), Klotho, FGF23, PiT1, PiT2, and ANO4 were each markedly lower in CSFs than NSFs (P < 0.05) whereas excretion of those with markers of monocytes (CD14), T-Lymphocytes (CD3), B-Lymphocytes (CD19), plasma cells (CD138 plus CD319 positive) were not different between the groups. Urinary excretion of EVs expressing PiT1 and PiT2 negatively (P < 0.05) correlated with urinary phosphorus excretion, whereas excretion of EVs expressing FGF23 negatively (P < 0.05) correlated with both urinary calcium and phosphorus excretion. Urinary EVs with markers of HIP1 and ANO4 correlated negatively (P < 0.05) with clinical stone events and basement membrane calcifications on papillary tip biopsies. Conclusions Urinary excretion of EVs derived from specific types of activated immune cells and EVs with proteins related to calcium/phosphorus regulation differed between CSFs and NSFs. Further validation of these and other populations of urinary EVs in larger cohort could identify biomarkers that elucidate novel pathogenic mechanisms of calcium stone formation in specific subsets of patients.


Sign in / Sign up

Export Citation Format

Share Document