soluble complex
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 14)

H-INDEX

29
(FIVE YEARS 0)

Author(s):  
N. E. Kobzar ◽  
V. P. Mikhailov ◽  
V. V. Porseva

Introduction. Methyl-β-cyclodextrin is a potent acceptor of cellular membrane cholesterol and, at the same time, used as a solubilizer, which makes it a potential target for targeted delivery of hydrophobic compounds.Aim. To assess the effect of administration of methyl-β-cyclodextrin containing cholesterol on the degree of lung hydration and osmotic resistance of erythrocytes against the background of pulmonary edema in adult rats caused by the administration of mezaton.Materials and methods. We investigated the degree of hydration of the lungs by the value of the pulmonary coefficient and their dry residue. Osmotic resistance of erythrocytes were assessed by the intensity of their hemolysis in a series of hypotonic sodium chloride solutions in adult male Wistar rats (220±40 g) of the control group (intact, n=10) and two experimental groups with pulmonary edema caused by the administration of mezaton (n=10) and with the subsequent introduction of a water-soluble complex cholesterol-methyl-β-cyclodextrin against the background of the development of pulmonary edema (n=10). We used additional criteria for assessing the osmotic resistance of erythrocytes: minimum resistance – the concentration of sodium chloride solution, at which the first “weak” erythrocytes begin to hemolyze; maximum resistance is the concentration of sodium chloride solution at which all or almost all erythrocytes hemolyzed.Results. The introduction of mezaton led to the development of pronounced hemolysis and hydration of the lungs with the development of their edema and a narrowing of the range of minimum and maximum osmotic resistance of erythrocytes. The introduction of a complex of cholesterol with methyl-β-cyclodextrin after edemogenic exposure led to a decrease in the severity of pulmonary edema, determined by a decrease in the pulmonary coefficient and an increase in the dry residue, and to an increase in the osmotic resistance of erythrocytes with an expansion of the range of their minimum and maximum osmotic resistance.Conclusion. The introduction of a water-soluble complex of cholesterol with methyl-β-cyclodextrin against the background of the development of hemodynamic pulmonary edema significantly reduced the degree of hydration of the lungs, which combined with an increase in the osmotic resistance of erythrocytes.


2021 ◽  
Vol 14 (9) ◽  
pp. 939
Author(s):  
Jamal Moideen Muthu Mohamed ◽  
Ali Alqahtani ◽  
Barkat A. Khan ◽  
Adel Al Fatease ◽  
Taha Alqahtani ◽  
...  

This study was designed to investigate the effects of curcumin (CMN) soluble complex (SC) prepared by melt casting (HM) and hot-melt extrusion (HME) technology. Phase solubility (PS) study, in silico molecular modeling, aqueous solubility, drug release, and physicochemical investigation including a novel dyeing test was performed to obtain an optimized complex by a central composite design (CCD). The results show that the HME-SC produces better improvements towards solubility (0.852 ± 0.02), dissolution (91.87 ± 0.21 % at 30 min), with an ideal stability constant (309 and 377 M−1 at 25 and 37 °C, respectively) and exhibits AL type of isotherm indicating 1:1 stoichiometry. Intermolecular hydrogen bonding involves the formation of SC, which does not undergo any chemical modification, followed by the complete conversion of the amorphous form which was identified by XRD. The in vitro cytotoxicity showed that IC50 was achieved in the SW480 (72 µM.mL−1) and Caco-2 (40 µM.mL−1) cells while that of pure CMN ranged from 146 to 116 µM/mL−1. Apoptosis studies showed that cell death is primarily due to apoptosis, with a low rate of necrosis. In vivo toxicity, confirmed by the zebrafish model, exhibited the safety of the HME-SC. In conclusion, the HME-SC potentially enhances the solubility and cytotoxicity to the treatment of colorectal cancer (CRC).


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Ying Zhou ◽  
Jian Guo ◽  
Xinyu Wang ◽  
Yang Cheng ◽  
Jianwen Guan ◽  
...  

AbstractTarget of Rapamycin Complex 1 (TORC1) is a master regulator that coordinates nutrient status with cell metabolism. The GTPase-activating protein towards Rags complex 1 (GATOR1) inhibits TORC1 activity and protects cells from damage during periods of stress. Here we characterize multiple pathways that regulate the expression of the GATOR1 component Nprl3 in Drosophila. We determine that the stability of Nprl3 is impacted by the Unassembled Soluble Complex Proteins Degradation (USPD) pathway. In addition, we find that FK506 binding protein 39 (FKBP39)-dependent proteolytic destruction maintains Nprl3 at low levels in nutrient replete conditions. Nutrient starvation abrogates the degradation of the Nprl3 protein and rapidly promotes Nprl3 accumulation. Consistent with a role in promoting the stability of a TORC1 inhibitor, mutations in fkbp39 decrease TORC1 activity and increase autophagy. Finally, we show that the 5′UTR of nprl3 transcripts contain a functional upstream open reading frame (uORF) that inhibits main ORF translation. In summary, our work has uncovered novel mechanisms of Nprl3 regulation and identifies an important role for FKBP39 in the control of cellular metabolism.


Author(s):  
Mozhdeh Sarraf ◽  
Sara Naji Tabasi ◽  
Adel Beig-Babaei

Soluble Complex of Basil Seed and Xanthan Gum with Whey Protein Concentrate


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marc A Schureck ◽  
Joseph E Darling ◽  
Alan Merk ◽  
Jinfeng Shao ◽  
Geervani Daggupati ◽  
...  

Malaria parasites use the RhopH complex for erythrocyte invasion and channel-mediated nutrient uptake. As the member proteins are unique to Plasmodium spp., how they interact and traffic through subcellular sites to serve these essential functions is unknown. We show that RhopH is synthesized as a soluble complex of CLAG3, RhopH2, and RhopH3 with 1:1:1 stoichiometry. After transfer to a new host cell, the complex crosses a vacuolar membrane surrounding the intracellular parasite and becomes integral to the erythrocyte membrane through a PTEX translocon-dependent process. We present a 2.9 Å single-particle cryo-electron microscopy structure of the trafficking complex, revealing that CLAG3 interacts with the other subunits over large surface areas. This soluble complex is tightly assembled with extensive disulfide bonding and predicted transmembrane helices shielded. We propose a large protein complex stabilized for trafficking but poised for host membrane insertion through large-scale rearrangements, paralleling smaller two-state pore-forming proteins in other organisms.


2021 ◽  
Author(s):  
Ahmed M. Mansour ◽  
Krzysztof Radacki ◽  
Ola R. Shehab

Introduction of the propyl-sulfonic acid group at N1 of the coordinated 2(pyridyl)benzimidazole ligand (L) in [RhCl(η5-C5Me5)L](CF3SO3) gives rise to a water-soluble complex, which shows comparable antifungal activity to Fluconazole.


Urolithiasis ◽  
2020 ◽  
Author(s):  
Martino Marangella ◽  
Michele Petrarulo ◽  
Corrado Vitale ◽  
Piergiuseppe Daniele ◽  
Silvio Sammartano

AbstractEstimation of state of saturation with stone-forming salt represents a reliable tool to assess the overall risk. The available methods are based on computer-assisted ab initio calculations. Our earlier method URSUS was subsequently substituted by Lithorisk®, a software including visualization of risk profiles. Unfortunately, Lithorisk does not adapt to new versions of Windows® and Macintosh® Apple, neither runs on smartphones or tablets. We propose a novel version of the software which can be directly used online on any device equipped by different operating systems. Upon online connection and after registration, the software is ready for unlimited accesses, in either Italian, English or French. After digiting input variables (urea and creatinine also included) in a fixed dashboard, state of saturation is promptly given. In addition to state of saturation (ß) with calcium oxalate, brushite and uric acid, ß struvite and cystine are available. Both input variables and ß results are graphically depicted as green or red horizontal bars to indicate recommended values. The software was implemented with equations allowing to omit sulphate and ammonium excretion for users with difficult access to these measurements. This simplified version, tested for ßCaOx and ßBsh on 100 urine samples showed close correlation with the full version. The software gives a list of total and free concentrations and soluble complex species distribution. Results can be printed or saved as PDF. So, we propose an easily accessible software to estimate state of saturation usable on any operating system and personal device.


2020 ◽  
Vol 8 (2) ◽  
pp. e001428
Author(s):  
Piera Filomena Fiore ◽  
Sabina Di Matteo ◽  
Nicola Tumino ◽  
Francesca Romana Mariotti ◽  
Gabriella Pietra ◽  
...  

Soluble interleukin (IL)-15 exists under two forms: as monomer (sIL-15) or as heterodimeric complex in association with sIL-15Rα (sIL-15/IL-15Rα). Both forms have been successfully tested in experimental tumor murine models and are currently undergoing investigation in phase I/II clinical trials. Despite more than 20 years research on IL-15, some controversial issues remain to be addressed. A first point concerns the detection of the sIL-15/IL-15Rα in plasma of healthy donors or patients with cancer and its biological significance. The second and third unsolved question regards the protumorigenic role of the IL-15/IL-15Rα complex in human cancer and the detrimental immunological consequences associated to prolonged exposure of natural killer (NK) cells to both forms of soluble IL-15, respectively. Data suggest that in vivo prolonged or repeated exposure to monomeric sIL-15 or the soluble complex may lead to NK hypo-responsiveness through the expansion of the CD8+/CD44+ T cell subset that would suppress NK cell functions. In vitro experiments indicate that soluble complex and monomeric IL-15 may cause NK hyporesponsiveness through a direct effect caused by their prolonged stimulation, suggesting that this mechanism could also be effective in vivo. Therefore, a better knowledge of IL-15 and a more appropriate use of both its soluble forms, in terms of concentrations and time of exposure, are essential in order to improve their therapeutic use. In cancer, the overproduction of sIL-15/IL-15Rα could represent a novel mechanism of immune escape. The soluble complex may act as a decoy cytokine unable to efficiently foster NK cells, or could induce NK hyporesponsiveness through an excessive and prolonged stimulation depending on the type of IL-15Rα isoforms associated. All these unsolved questions are not merely limited to the knowledge of IL-15 pathophysiology, but are crucial also for the therapeutic use of this cytokine. Therefore, in this review, we will discuss key unanswered issues on the heterogeneity and biological significance of IL-15 isoforms, analyzing both their cancer-related biological functions and their therapeutic implications.


Sign in / Sign up

Export Citation Format

Share Document