Plasma concentrations and comparisons of brain natriuretic peptide and atrial natriuretic peptide in normal subjects, cardiac transplant recipients and patients with dialysis-independent or dialysis-dependent chronic renal failure

1992 ◽  
Vol 83 (4) ◽  
pp. 437-444 ◽  
Author(s):  
M. G. Buckley ◽  
D. Sethi ◽  
N. D. Markandu ◽  
G. A. Sagnella ◽  
D. R. J. Singer ◽  
...  

1. We have developed a radioimmunoassay for the measurement of immunoreactive brain natriuretic peptide (1–32) in human plasma. Simultaneous measurements of atrial natriuretic peptide have also been carried out to allow for direct comparison between circulating brain natriuretic peptide and atrial natriuretic peptide. Plasma levels of immunoreactive brain natriuretic peptide (means ± sem) were 1.1 ± 0.1 pmol/l in 36 normal healthy subjects and were significantly elevated in cardiac transplant recipients (18.8 ± 3.9 pmol/l, n = 12) and in patients with dialysis-independent (8.8 ± 1.5 pmol/l, n = 11) or dialysis-dependent (41.6 ± 8.8 pmol/l, n = 14) chronic renal failure. Similarly, in these groups of patients plasma levels of atrial natriuretic peptide were also significantly raised when compared with those in the group of normal healthy subjects. 2. The plasma level of atrial natriuretic peptide was significantly higher than that of brain natriuretic peptide in normal subjects and in patients with dialysis-independent chronic renal failure, with ratios (atrial natriuretic peptide/brain natriuretic peptide) of 2.8 ± 0.2 and 2.2 ± 0.3, respectively. However, in both cardiac transplant recipients and patients on dialysis plasma levels of atrial natriuretic peptide and brain natriuretic peptide were similar, with ratios of 1.3 ± 0.2 and 1.0 ± 0.1, respectively, in these two groups. 3. Plasma levels of brain natriuretic peptide and atrial natriuretic peptide were significantly correlated in the healthy subjects and within each group of patients. When all groups were taken together, there was an overall correlation of 0.90 (P<0.001, n = 73). 4. Patients on dialysis had the highest plasma levels of both brain natriuretic peptide (41.6 ± 8.8 pmol/l, n = 14) and atrial natriuretic peptide (41.3 ± 9.4 pmol/l, n = 14) and the levels of both peptides declined significantly after maintenance haemodialysis. However, the overall percentage decrease in the plasma level of atrial natriuretic peptide (43.6 ± 7.5%) after dialysis was significantly greater than that observed for brain natriuretic peptide (15.9 ± 5.3%, P<0.005). 5. Displacement curves of iodinated atrial natriuretic peptide from bovine adrenal membranes by human atrial natriuretic peptide (99–126) and human brain natriuretic peptide (1–32) gave a median inhibitory concentration of 144 pmol/l for atrial natriuretic peptide and 724.4 pmol/l for brain natriuretic peptide. The cross-reactivity of human brain natriuretic peptide with the atrial natriuretic peptide receptor preparation was 19.5% of that of atrial natriuretic peptide, indicating that human brain natriuretic peptide has a lower binding affinity for the atrial natriuretic peptide receptor/binding site on bovine adrenal membranes. 6. These results suggest that brain natriuretic peptide is co-secreted with atrial natriuretic peptide and may also be an important factor in the adaptive mechanisms to impairment of renal function. However, whether brain natriuretic peptide has an independent and fundamentally important role in man remains to be investigated.

1989 ◽  
Vol 77 (5) ◽  
pp. 573-579 ◽  
Author(s):  
M. G. Buckley ◽  
G. A. Sagnella ◽  
N. D. Markandu ◽  
D. R. J. Singer ◽  
G. A. MacGregor

1. Plasma levels of immunoreactive N-terminal pro-atrial natriuretic peptide (N-terminal ANP) have been measured in 25 normal subjects, 29 patients with essential hypertension, six cardiac transplant recipients, seven patients with dialysis-independent chronic renal failure and 11 patients with haemodialysis-dependent chronic renal failure. Plasma was extracted on Sep-Pak cartridges and N-terminal ANP immunoreactivity was measured using an antibody directed against pro-ANP (1–30). 2. Plasma levels of TV-terminal ANP (means ± sem) were 235.3 ± 19.2 pg/ml in normal subjects and were significantly raised in patients with essential hypertension (363.6 ± 36.3 pg/ml), in cardiac transplant recipients (1240.0 ± 196.2 pg/ml), in patients with chronic renal failure not requiring dialysis (1636.6 ± 488.4 pg/ml) and patients with chronic renal failure on maintenance haemodialysis (10 336.1 ± 2043.7 pg/ml). 3. There were positive and significant correlations between the plasma levels of TV-terminal ANP and α-human ANP (α-hANP) with individual correlation coefficients of 0.68 within the normal subjects, 0.47 in patients with essential hypertension, 0.78 in patients with dialysis-independent chronic renal failure and 0.68 in patients with haemodialysis-dependent chronic renal failure (P < 0.05 in every case). 4. Gel filtration behaviour on Sephadex G-50 of the immunoreactive N-terminal ANP from Sep-Pak extracts of plasma from normal subjects or patients was consistent with a single peak having an elution volume corresponding to that of human pro-ANP (1–67) standard. 5. These studies demonstrate that the N-terminal pro-ANP peptide is co-secreted with α-hANP in both normal subjects and patients with cardiovascular/renal disease. The higher levels of the N-terminal ANP may reflect differences in the rate of elimination from the circulation but the exact structure and functional significance of the circulating N-terminal ANP remains to be established.


1994 ◽  
Vol 87 (3) ◽  
pp. 311-317 ◽  
Author(s):  
M. G. Buckley ◽  
N. D. Markandu ◽  
G. A. Sagnella ◽  
G. A. MacGregor

1. The aim of this study was to determine plasma levels of N-terminal atrial natriuretic peptide and atrial natriuretic peptide in normal subjects and in patients with essential hypertension, cardiac transplant and chronic renal failure, using radioimmunoassays directed towards the mid-portion pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30) of the N-terminal atrial natriuretic peptide and atrial natriuretic peptide (99-126). The circulating form(s) of the immunoreactive N-terminal atrial natriuretic peptide in plasma extracts has been investigated using all three radioimmunoassays by means of gel filtration chromatography to further clarify the major immunoreactive molecular circulating form(s) of N-terminal atrial natriuretic peptide in man. 2. The plasma level (mean ± SEM) of N-terminal pro-atrial natriuretic peptide (31-67) in the normal subjects was 547.2 ± 32.7 pg/ml (n = 36) and was significantly elevated in patients with essential hypertension (730.2 ± 72.3 pg/ml, P < 0.025, n = 39), in cardiac transplant recipients (3214.0 ± 432.2 pg/ml, P < 0.001, n = 9) and in patients with chronic renal failure (3571.8 ± 474.1 pg/ml, P < 0.001, n = 11). Plasma levels of N-terminal pro-atrial natriuretic peptide (1-30) and atrial natriuretic peptide were similarly elevated in the same patient groups when compared with the mean plasma values in the normal subjects. 3. There were positive associations between pro-atrial natriuretic peptide (31-67) and atrial natriuretic peptide, pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30) and between pro-atrial natriuretic peptide (1-30) and atrial natriuretic peptide in the normal subjects, hypertensive patients, cardiac transplant recipients and patients with chronic renal failure. The correlation coefficient for all groups taken together was 0.86 (P < 0.001. n = 95) for pro-atrial natriuretic peptide (31-67) and atrial natriuretic peptide, 0.93 (P < 0.001, n = 95) for pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30), and 0.82 (p < 0.001, n = 95) for pro-atrial natriuretic peptide (1-30) and atrial natriuretic peptide. 4. Gel filtration of extracted plasma from cardiac transplant patients and patients with chronic renal failure indicated a single peak of immunoreactivity for N-terminal atrial natriuretic peptide using both the pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30) radioimmunoassays, suggesting a major single high-molecular-mass circulating immunoreactive N-terminal atrial natriuretic peptide, probably pro-atrial natriuretic peptide (1-98). Atrial natriuretic peptide immunoreactivity, as measured by the radioimmunoassay for atrial natriuretic peptide (99-126), showed a separate and distinct peak from that of the N-terminal atrial natriuretic peptide, which co-eluted with the synthetic human standard atrial natriuretic peptide (99-126). 5. These results show that immunoreactive N-terminal atrial natriuretic peptide and atrial natriuretic peptide are elevated in patients with essential hypertension, in cardiac transplant recipients and in patients with chronic renal failure. The major immunoreactive form of N-terminal atrial natriuretic peptide cross-reacting in both the pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30) radioimmunoassays is of a high molecular mass, probably pro-atrial natriuretic peptide (1-98). Since pro-atrial natriuretic peptide (1-98) is unlikely to cross-react identically with antibodies for pro-atrial natriuretic peptide (31-67) or pro-atrial natriuretic peptide (1-30), this could account for the differences in plasma levels obtained by the assays for pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30).


1994 ◽  
Vol 86 (6) ◽  
pp. 723-730 ◽  
Author(s):  
B. M. Y. Cheung ◽  
J. E. C. Dickerson ◽  
M. J. Ashby ◽  
M. J. Brown ◽  
J. Brown

1. Brain natriuretic peptide, closely related to atrial natriuretic peptide in structure, may be an important circulating hormone. Its physiological role is unclear. First, we studied the effects of incremental infusions of brain natriuretic peptide in six healthy men on plasma brain natriuretic peptide levels and the pharmacokinetics of brain natriuretic peptide. Synthetic human brain natriuretic peptide-32 was infused intravenously, at an initial rate of 0.4 pmol min−1 kg−1, doubling every 15 min until the dose rate reached 6.4 pmol min−1 kg−1, at which rate the infusion was maintained for 30 min. 2. The brain natriuretic peptide infusion raised the brain natriuretic peptide-like immunoreactivity from 1.4 ± 0.5 pmol/l to 21.4 ± 7.6 pmol/l. Brain natriuretic peptide-like immunoreactivity after the end of infusion was consistent with a bi-exponential decay, with half-lives of 2.1 min and 37 min. 3. Next, we studied the effects of low-dose infusion of brain natriuretic peptide to mimic physiological increments in the circulating levels in comparison with atrial natriuretic peptide. Six dehydrated male subjects received intravenous infusions of atrial natriuretic peptide and brain natriuretic peptide, separately and in combination, in a randomized double-blind, placebo-controlled, four-part cross-over design. Atrial natriuretic peptide and brain natriuretic peptide were given at the rate of 0.75 and 0.4 pmol min−1 kg−1, respectively, for 3 h. The control infusion consisted of the vehicle. 4. Analysis of variance showed that atrial natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide, but not brain natriuretic peptide alone, increased urinary flow and decreased urinary osmolality significantly. However, urinary sodium excretion was significantly increased by atrial natriuretic peptide, brain natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide. 5. None of the four infusates significantly altered the blood pressure, heart rate or glomerular filtration rate. 6. This study showed, for the first time, that physiological increments in brain natriuretic peptide, like those in atrial natriuretic peptide, are natriuretic. Although atrial natriuretic peptide and brain natriuretic peptide do not appear to interact synergistically, they are likely to act in concert in the physiological regulation of sodium balance.


1998 ◽  
Vol 95 (5) ◽  
pp. 547-555 ◽  
Author(s):  
J. G. LAINCHBURY ◽  
M. G. NICHOLLS ◽  
E. A. ESPINER ◽  
H. IKRAM ◽  
T. G. YANDLE ◽  
...  

1.The cardiac natriuretic peptides, atrial natriuretic peptide and brain natriuretic peptide, are degraded via clearance receptors and the enzyme neutral endopeptidase (EC 3.4.24.11). We studied the regional plasma concentrations of these peptides and their response to acute neutral endopeptidase inhibition in a consecutive series of patients with a broad spectrum of severity of cardiac dysfunction who were undergoing diagnostic right and left heart catheterization (24 patients, mean age 62.6 years). 2.Baseline blood samples were obtained for hormone analysis from femoral artery, femoral vein, renal vein, hepatic vein, superior vena cava, coronary sinus and pulmonary artery, and initial haemodynamic measurements were made. Twelve patients then received a neutral endopeptidase inhibitor (SCH 32615, 200 ;mg intravenously) and 12 received vehicle alone. The cardiac catheterization procedure was then completed and haemodynamic and hormone measurements were repeated. 3.Haemodynamic status was similar at baseline in both groups, and at repeated measurement (post-procedure after placebo or active drugs) haemodynamic variables were not significantly different from baseline values. Plasma levels of atrial and brain natriuretic peptides exhibited an arteriovenous increment (344% and 124% respectively) across the heart (femoral artery to coronary sinus) and decrement (by 28–54% and 9–16% respectively) across all other tissue beds (P< 0.05 for all) except the lung (no change). Final levels of atrial natriuretic peptide rose above initial levels at all sites in both groups (P< 0.05) except coronary sinus levels in the vehicle group (no change). The increase was consistently greater in the inhibitor group at all sites (P< 0.05 versus placebo). Levels of brain natriuretic peptide rose at all sites in the inhibitor group only (P< 0.05). The transcardiac step-up in atrial natriuretic peptide was markedly augmented after the administration of neutral endopeptidase inhibitor. Other tissue gradients were not significantly altered by neutral endopeptidase inhibitor. 4.Atrial and brain natriuretic peptides in plasma are degraded by a number of tissues, and respond differently to cardiac catheterization. Neutral endopeptidase has a significant role in determining plasma levels of natriuretic peptides, in part perhaps by influencing the amount of intact peptide reaching the circulation after secretion from the heart.


1992 ◽  
Vol 83 (5) ◽  
pp. 529-533 ◽  
Author(s):  
Chim C. Lang ◽  
Wendy J. Coutie ◽  
Allan D. Struthers ◽  
D. Paul Dhillon ◽  
John H. Winter ◽  
...  

1. Studies in vitro have recently shown that both atrial natriuretic peptide and brain natriuretic peptide have pulmonary vasorelaxant activity. The purpose of the present study was to evaluate for the first time whether plasma levels of brain natriuretic peptide are elevated in chronic obstructive pulmonary disease. Plasma levels of brain natriuretic peptide and atrial natriuretic peptide were therefore measured in 12 patients admitted with acute hypoxaemic chronic obstructive pulmonary disease [arterial partial pressure of O2, 6.2 ± 0.4 kPa; arterial partial pressure of CO2, 6.9 ± 0.1 kPa; forced expiratory volume in 1 s, 0.6 ± 0.07 litre (27 ± 3% of predicted)]. All but three patients had oedema on admission. 2. Plasma levels of both brain natriuretic peptide and atrial natriuretic peptide were elevated in patients with chronic obstructive pulmonary disease (31.4 ± 4.1 pmol/l and 45.0 ± 8.1 pmol/l, respectively) compared with healthy control subjects (1.7 ± 0.8 pmol/l and 8.0 ± 3.5 pmol/l, respectively). Thus, plasma levels of brain natriuretic peptide and atrial natriuretic peptide in patients with chronic obstructive pulmonary disease were increased by 18.5- and 5.6-fold respectively compared with healthy control subjects. 3. There was a significant inverse correlation between the plasma level of brain natriuretic peptide and the arterial partial pressure of O2 (r = −0.65, r2 = 0.42, P = 0.03), but not between the plasma atrial natriuretic peptide level and the arterial partial pressure of O2 (r2 = 0.07, not significant). The arterial partial pressure of CO2 did not correlate with the plasma level of either brain natriuretic peptide or atrial natriuretic peptide. 4. Thus, plasma levels of brain natriuretic peptide were proportionately higher than those of atrial natriuretic peptide in patients with hypoxaemic chronic obstructive pulmonary disease. Unlike those of atrial natriuretic peptide, plasma levels of brain natriuretic peptide were correlated with the degree of hypoxaemia. Further studies are required to investigate the release and clearance of brain natriuretic peptide in chronic obstructive pulmonary disease, as well as its pulmonary vasodilator activity in vivo.


1992 ◽  
Vol 82 (6) ◽  
pp. 619-623 ◽  
Author(s):  
Chim C. Lang ◽  
Joseph G. Motwani ◽  
Wendy J. R. Coutie ◽  
Allan D. Struthers

1. Brain natriuretic peptide is a new natriuretic hormone with striking similarity to atrial natriuretic peptide, but there are no previous data concerning its clearance in man. Two pathways of clearance for atrial natriuretic peptide are recognized: degradation by neutral endopeptidase and binding to atrial natriuretic peptide clearance receptors. We have examined the effect of candoxatril, an inhibitor of neutral endopeptidase (dose range 10–200 mg), and the effect of an infusion of a pharmacological dose [45 μg (90 μg in two patients)] of synthetic human atrial natriuretic peptide on plasma human brain natriuretic peptide-like immunoreactivity levels in seven patients with mild to moderate chronic heart failure. 2. Plasma human brain natriuretic peptide-like immunoreactivity levels were elevated in all patients (mean ± sem 22.0 ± 6.2 pmol/l) compared with healthy control subjects (1.3 ± 0.2 pmol/l, n = 11). 3. In all patients, candoxatril increased both plasma atrial natriuretic peptide (P < 0.05) and plasma human brain natriuretic peptide-like immunoreactivity (P < 0.05) levels. 4. By contrast, an exogenous infusion of atrial natriuretic peptide had no effect on plasma human brain natriuretic peptide-like immunoreactivity levels despite increasing the plasma atrial natriuretic peptide concentration to 424 ± 74 pmol/l, which is a level of atrial natriuretic peptide which would have ‘swamped’ all atrial natriuretic peptide clearance receptors. 5. We have therefore shown that plasma human brain natriuretic peptide-like immunoreactivity levels in chronic heart failure are increased by a neutral endopeptidase inhibitor, but are unchanged by an exogenous infusion of atrial natriuretic peptide. Our results suggest that in patients with chronic heart failure, degradation by neutral endopeptidase is an important pathway for clearance of brain natriuretic peptide. By an indirect approach, we did not find any evidence of a role for atrial natriuretic peptide clearance receptors in the metabolism of brain natriuretic peptide in these patients. Although this is in agreement with work in vitro, there could be alternative explanations for the lack of a change in circulating human brain natriuretic peptide-like immunoreactivity during exogenous administration of atrial natriuretic peptide.


1990 ◽  
Vol 78 (2) ◽  
pp. 159-163 ◽  
Author(s):  
D. R. J. Singer ◽  
N. R. Banner ◽  
A. Cox ◽  
N. Patel ◽  
M. Burdon ◽  
...  

1. To study the importance of cardiac innervation in the regulation of atrial natriuretic peptide, plasma atrial natriuretic peptide levels were measured during symptom-limited, graded exercise on a cycle ergometer in seven male orthotopic cardiac transplant recipients. 2. Resting plasma atrial natriuretic peptide was significantly higher in the transplant recipients than in two control groups, one matched to the transplant recipients (group 1) and the other to the age of the donor heart (group II). 3. The response to exercise of the cardiac transplant recipients was compared with the response of control group II. Mean maximal work load achieved with exercise was around 40% lower in the cardiac transplant recipients. During exercise, plasma atrial natriuretic peptide levels increased in both the cardiac transplant recipients and the control subjects. The increase in plasma atrial natriuretic peptide with exercise was greater in absolute, but less in percentage, terms in transplant recipients than in the control subjects. 4. The increase in mean arterial pressure with exercise was similar in patients and in control subjects; however, heart rate increased in the patients by only 33% compared with a rise of 151% in the control group. 5. These results provide insight into the control of the sodium regulatory hormone atrial natriuretic peptide. First, factors other than a change in heart rate appear of importance in the regulation of atrial natriuretic peptide. Secondly, these findings suggest that cardiac innervation is not of dominant importance in the modulation of atrial natriuretic peptide secretion.


1994 ◽  
Vol 87 (3) ◽  
pp. 319-322 ◽  
Author(s):  
Kazuhito Totsune ◽  
Kazuhiro Takahashi ◽  
Osamu Murakami ◽  
Fumitoshi Satoh ◽  
Masahiko Sone ◽  
...  

1. C-type natriuretic peptide is a neuropeptide, which is also produced by the vascular endothelial cells. Plasma immunoreactive C-type natriuretic peptide concentrations in patients with various diseases have not yet been studied. 2. Plasma immunoreactive C-type natriuretic peptide concentrations were studied by radioimmunoassay in normal subjects, patients with congestive heart failure, non-dialysed patients with chronic renal failure and haemodialysis patients with chronic renal failure. The C-type natriuretic peptide levels were compared with the levels of atrial natriuretic peptide and brain natriuretic peptide. 3. Plasma immunoreactive C-type natriuretic peptide concentrations were greatly elevated in patients with chronic renal failure [non-dialysed, 13.0 ± 4.2 pmol/l (mean ± SEM), n = 9, P < 0.01) compared with normal subjects (4.4 ± 0.4 pmol/l, n = 26); haemodialysis, 16.1 ± 2.1 pmol/l, n = 13, P < 0.01], but not in patients with congestive heart failure (New York Heart Association Class II-IV, 3.0 ± 0.7 pmol/l, n = 11, P > 0.05). Plasma immunoreactive atrial natriuretic peptide and brain natriuretic peptide concentrations were elevated both in patients with congestive heart failure and in haemodialysis patients with chronic renal failure. 4. Reverse-phase high performance liquid chromatography showed that immunoreactive C-type natriuretic peptide in plasma from normal subjects and haemodialysis patients was eluted in the positions of C-type natriuretic peptide −22 and −53. 5. These findings suggest that C-type natriuretic peptide is a non-cardiac circulating hormone and participates in the cardiovascular regulation in a different manner from atrial natriuretic peptide and brain natriuretic peptide.


Sign in / Sign up

Export Citation Format

Share Document