Evidence against the formation of 2-amino-6-(2-formyl-5-hydroxymethyl-pyrrol-l-yl)-hexanoic acid ('pyrraline') as an early-stage product or advanced glycation end product in non-enzymic protein glycation

1993 ◽  
Vol 84 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Patricia R. Smith ◽  
Hanif H. Somani ◽  
Paul J. Thornalley ◽  
Jonathan Benn ◽  
Peter H. Sonksen

1. It has been suggested that 2-amino-6-(2-formyl-5-hydroxymethyl-pyrrol-l-yl)-hexanoic acid ('pyrraline') is formed as an advanced glycation end product in the Maillard reaction under physiological conditions. Antibodies were raised to caproyl-pyrraline linked to keyhole-limpet haemocyanin and were used to develop an e.l.i.s.a. and Western blotting system for the specific detection of pyrraline in samples in vivo and in vitro. 2. Human serum albumin was isolated from the serum samples of diabetic and non-diabetic subjects. Pyrraline was not detected (<1.2 pmol) in any of the samples, indicating that it was not a major advanced glycation end product in vivo. 3. BSA was incubated separately with D-glucose and a model fructosamine, N-(l-deoxy-D-fructos-l-yl)-hippuryl-lysine, under physiological conditions for 30 days. Aliquots removed from the incubations at 5 day intervals contained no detectable pyrraline, indicating that pyrraline was not an early-stage product of the Maillard reaction in vitro. 4. The model fructosamine, N>-(1-deoxy-D-fructos-l-yl)-hippuryl-lysine, was incubated at pH 7.4 and 37°C for 25 days during which it degraded to hippuryl-lysine and N>-carboxymethyl-hippuryl-lysine. Aliquots were removed at 5 day intervals and assayed for pyrraline. None was detected (<23 pmol/ml) in the course of the degradation of the fructosamine (400 nmol/ml degraded), indicating that pyrraline was not a major product of the degradation of fructosamine under physiological conditions in vitro. 5. We conclude that pyrraline is not a major intermediate or advanced glycation end product in the Maillard reaction under physiological conditions in vitro and in vivo. A previous report of immunoassay of pyrraline may have given positive results because of non-specific antibodies raised to impure hapten.

2011 ◽  
Vol 107 (7) ◽  
pp. 941-949 ◽  
Author(s):  
P. Muthenna ◽  
C. Akileshwari ◽  
Megha Saraswat ◽  
G. Bhanuprakash Reddy

Formation of advanced glycation end products (AGE) plays a key role in the several pathophysiologies associated with ageing and diabetes, such as arthritis, atherosclerosis, chronic renal insufficiency, Alzheimer's disease, nephropathy, neuropathy and cataract. This raises the possibility of inhibition of AGE formation as one of the approaches to prevent or arrest the progression of diabetic complications. Previously, we have reported that some common dietary sources such as fruits, vegetables, herbs and spices have the potential to inhibit AGE formation. Flavonoids are abundantly found in fruits, vegetables, herbs and spices, and rutin is one of the commonly found dietary flavonols. In the present study, we have demonstrated the antiglycating potential and mechanism of action of rutin using goat eye lens proteins as model proteins. Under in vitro conditions, rutin inhibited glycation as assessed by SDS-PAGE, AGE-fluorescence, boronate affinity chromatography and immunodetection of specific AGE. Further, we provided insight into the mechanism of inhibition of protein glycation that rutin not only scavenges free-radicals directly but also chelates the metal ions by forming complexes with them and thereby partly inhibiting post-Amadori formation. These findings indicate the potential of rutin to prevent and/or inhibit protein glycation and the prospects for controlling AGE-mediated diabetic pathological conditions in vivo.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Nobuyasu Matsuura ◽  
Tadashi Aradate ◽  
Chihiro Kurosaka ◽  
Makoto Ubukata ◽  
Shiho Kittaka ◽  
...  

Plantagoside (5,7,4′,5′-tetrahydroxyflavanone-3′-O-glucoside) and its aglycone (5,7,3′,4′,5′-pentahydroxyflavanone), isolated from a 50% ethanol extract ofPlantago majorseeds (Plantaginaceae), were established to be potent inhibitors of the Maillard reaction. These compounds also inhibited the formation of advanced glycation end products in proteins in physiological conditions and inhibited protein cross-linking glycation. These results indicate thatP. majorseeds have potential therapeutic applications in the prevention of diabetic complications.


2008 ◽  
Vol 416 (3) ◽  
pp. 317-326 ◽  
Author(s):  
Ricardo A. Gomes ◽  
Luís M. A. Oliveira ◽  
Mariana Silva ◽  
Carla Ascenso ◽  
Alexandre Quintas ◽  
...  

Protein glycation is involved in structure and stability changes that impair protein functionality, which is associated with several human diseases, such as diabetes and amyloidotic neuropathies (Alzheimer's disease, Parkinson's disease and Andrade's syndrome). To understand the relationship of protein glycation with protein dysfunction, unfolding and β-fibre formation, numerous studies have been carried out in vitro. All of these previous experiments were conducted in non-physiological or pseudo-physiological conditions that bear little to no resemblance to what may happen in a living cell. In vivo, glycation occurs in a crowded and organized environment, where proteins are exposed to a steady-state of glycation agents, namely methylglyoxal, whereas in vitro, a bolus of a suitable glycation agent is added to diluted protein samples. In the present study, yeast was shown to be an ideal model to investigate glycation in vivo since it shows different glycation phenotypes and presents specific protein glycation targets. A comparison between in vivo glycated enolase and purified enolase glycated in vitro revealed marked differences. All effects regarding structure and stability changes were enhanced when the protein was glycated in vitro. The same applies to enzyme activity loss, dimer dissociation and unfolding. However, the major difference lies in the nature and location of specific advanced glycation end-products. In vivo, glycation appears to be a specific process, where the same residues are consistently modified in the same way, whereas in vitro several residues are modified with different advanced glycation end-products.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 453
Author(s):  
Ana Filošević Vujnović ◽  
Katarina Jović ◽  
Emanuel Pištan ◽  
Rozi Andretić Waldowski

Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.


Sign in / Sign up

Export Citation Format

Share Document