Cellular Localization of Inducible Nitric Oxide Synthase in Experimental Endotoxic Shock in the Rat

1994 ◽  
Vol 87 (2) ◽  
pp. 179-186 ◽  
Author(s):  
H. Terence Cook ◽  
Alison J. Bune ◽  
Albertine S. Jansen ◽  
G. Michael Taylor ◽  
Rashpal K. Loi ◽  
...  

1. Endotoxin induces a shock-like syndrome with increased nitric oxide synthesis. To clarify the cellular source of NO in endotoxic shock we used immunohistochemistry and in situ hybridization to localize inducible NO synthase in rats given lipopolysaccharide or Corynebacterium parvum and lipopolysaccharide. Immunohistochemistry was carried out with an antibody raised against a synthetic peptide of mouse macrophage NO synthase. In situ hybridization was performed with 35S-labelled oligonucleotide probes corresponding to cDNA sequences common to mouse macrophage inducible NO synthase and rat vascular smooth inducible NO synthase. Monocytes and macrophages were identified by immunohistochemistry with the mouse monoclonal antibody ED1. 2. After lipopolysaccharide alone, the major site of NO synthase induction was monocytes and macrophages in multiple organs, principally liver and spleen. Bronchial, bile duct, intestinal and bladder epithelium and some hepatocytes also expressed inducible NO synthase. Expression peaked at 5 h and had returned to normal by 12 h except in spleen. 3. After priming with C. parvum, lipopolysaccharide led to a similar distribution of inducible NO synthase as lipopolysaccharide alone, but in addition there was more prominent hepatocyte staining, staining in macrophage granulomas in the liver and inducible NO synthase was present in some endothelial cells in the aorta. 4. These findings provide a direct demonstration of the cellular localization of inducible NO synthase after lipopolysaccharide.

1995 ◽  
Vol 268 (5) ◽  
pp. H1856-H1861 ◽  
Author(s):  
R. E. Rumbaut ◽  
M. K. McKay ◽  
V. H. Huxley

Nitric oxide (NO) has been reported to modulate microvascular permeability to solutes in whole organs, venules, and cultured endothelial cell monolayers. NO derived from L-arginine via NO synthase activates soluble guanylate cyclase in vascular smooth muscle and endothelial cells. While the effects of NO on capillary water permeability have not been characterized, other activators of guanylate cyclase, such as sodium nitroprusside and atrial natriuretic peptide, increase capillary hydraulic conductivity (Lp). We hypothesized that inhibition of NO synthase with the arginine analogue, NG-monomethyl-L-arginine (L-NMMA), would decrease Lp from control levels. Lp was assessed in situ in single perfused frog mesenteric capillaries, first during control conditions (Lcontrolp) and then during superfusion (Ltestp) with either L-NMMA, NG-monomethyl-D-arginine (D-NMMA), a biologically inert enantiomer, or L-NMMA and L-arginine. Superfusion with 1 microM L-NMMA caused a decrease in Lp (Ltestp/Lcontrolp = 0.6 +/- 0.1, P < 0.001), whereas 1 microM D-NMMA was without effect on Lp (Ltestp/Lcontrolp = 1.0 +/- 0.2). The decrease in Lp by 1 microM L-NMMA was not only prevented by the presence of excess L-arginine (100 microM), but Lp increased from control (Ltestp/Lcontrolp = 1.4 +/- 0.2, P < 0.05). Furthermore, superfusion of L-arginine (100 microM) caused an increase in capillary Lp (Ltestp/Lcontrolp = 2.4 +/- 0.9, P < 0.05), whereas D-arginine had no effect on Lp (Ltestp/Lcontrolp = 1.2 +/- 0.3). The results of this study support our hypothesis that inhibition of NO synthase decreases capillary Lp in the intact circulation. In addition, L-arginine increases capillary Lp in our model.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 50 (1) ◽  
pp. 159-187 ◽  
Author(s):  
Hendrik Küpper ◽  
Laura Ort Seib ◽  
Mayandi Sivaguru ◽  
Owen A. Hoekenga ◽  
Leon V. Kochian

1986 ◽  
Vol 34 (7) ◽  
pp. 949-952 ◽  
Author(s):  
A J Stauder ◽  
P W Dickson ◽  
A R Aldred ◽  
G Schreiber ◽  
F A Mendelsohn ◽  
...  

The sites of synthesis of transthyretin in the brain were investigated using in situ hybridization with [35S]-labeled recombinant cDNA probes specific for transthyretin mRNA. Autoradiography of hybridized coronal sections of rat brain revealed specific cellular localization of transthyretin mRNA in choroid plexus epithelial cells of the lateral, third, and fourth ventricles. Transferrin mRNA was also investigated and, in contrast to transthyretin mRNA, was localized mainly in the lateral ventricles. Our results indicate that substantial synthesis of transthyretin and transferrin mRNA may occur in the choroid plexus.


1993 ◽  
Vol 75 (1) ◽  
pp. 424-431 ◽  
Author(s):  
M. J. Winn ◽  
B. Vallet ◽  
N. K. Asante ◽  
S. E. Curtis ◽  
S. M. Cain

We investigated the responses of canine coronary rings to endothelium-derived relaxing factor-nitric oxide- (EDRF-NO) dependent agonists and NO synthase (NOS) inhibitors 3 h after endotoxic shock was induced in dogs by lipopolysaccharide infusion (LPS; 2 mg/kg). EDRF-NO-dependent relaxation to thrombin [control maximum response produced after administration of thrombin (Emax) was -85.2 +/- 7.0% of the constrictor response produced by the thromboxane analogue U-46619], acetylcholine (control Emax -88.4 +/- 3.4%), or bradykinin (control Emax -80.5 +/- 2.2%) was not inhibited by LPS (Emax thrombin -75.9 +/- 9.5%; Emax acetylcholine -90.2 +/- 2.4%; Emax bradykinin -91.6 +/- 3.4%). The NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) (10(-6)-3 x 10(-4) M) caused constriction of rings with endothelium (Emax 36.3 +/- 5.6%), an effect that was greater after LPS (Emax 59.2 +/- 4.1%; P < 0.05). D-NMMA had no effect in control, but it increased tension after LPS (Emax 20.8 +/- 9.7%). Contrary to expectations, L- and D-NMMA relaxed endothelium-denuded rings (-30.4 +/- 8.7% L-NMMA; -45.1 +/- 11.7% D-NMMA; P < 0.05). However, neither agent caused relaxation after in vivo LPS (10.2 +/- 3.4% L-NMMA; 8.9 +/- 5.2% D-NMMA). N omega-nitro-L-arginine-methylester (L-NAME) and nitro-L-arginine (10(-6)-3 x 10(-4) M) increased tension (Emax 82.3 +/- 23.9 and 73.1 +/- 8.8%, respectively) but only when endothelium was present, and the increases were no greater in LPS-treated groups than in controls (with LPS: Emax L-NAME 87.3 +/- 16.5%; Emax nitro-L-arginine 65.7 +/- 3.3%).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document