apolipoprotein d
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 34)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Martin Overgaard ◽  
Tina Ravnsborg ◽  
Zuzana Lohse ◽  
Birgitte Bytoft ◽  
Tine D Clausen ◽  
...  

Cartilage ◽  
2021 ◽  
pp. 194760352110538
Author(s):  
Yong Qin ◽  
Jia Li ◽  
Yonggang Zhou ◽  
Chengliang Yin ◽  
Yi Li ◽  
...  

Objective Synovial inflammation influences the progression of osteoarthritis (OA). Herein, we aimed to identify potential biomarkers and analyze transcriptional regulatory-immune mechanism of synovitis in OA using weighted gene coexpression network analysis (WGCNA). Design A data set of OA synovium samples (GSE55235) was analyzed based on WGCNA. The most significant module with OA was identified and function annotation of the module was performed, following which the hub genes of the module were identified using Pearson correlation and a protein-protein interaction network was constructed. A transcriptional regulatory network of hub genes was constructed using the TRRUST database. The immune cell infiltration of OA samples was evaluated using the single-sample Gene Set Enrichment Analysis (ssGSEA) method. The hub genes coexpressed in multiple tissues were then screened out using data sets of synovium, cartilage, chondrocyte, subchondral bone, and synovial fluid samples. Finally, transcriptional factors and coexpressed hub genes were validated via experiments. Results The turquoise module of GSE55235 was identified via WGCNA. Functional annotation analysis showed that “mineral absorption” and “FoxO signaling pathway” were mostly enriched in the module. JUN, EGR1, FOSB, and KLF4 acted as central nodes in protein-protein interaction network and transcription factors to connect several target genes. “Activated B cell,” “activated CD4T cell,” “eosinophil,” “neutrophil,” and “type 17 T helper cell” showed high immune infiltration, while FOSB, KLF6, and MYBL2 showed significant negative correlation with type 17 T helper cell. Conclusions Our results suggest that the expression level of apolipoprotein D (APOD) was correlated with OA. Furthermore, transcriptional regulatory-immune network was constructed, which may contribute to OA therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Sanchez ◽  
Maria D. Ganfornina

Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.


2021 ◽  
Vol 23 (3) ◽  
pp. 409-414
Author(s):  
Marziyeh Salami ◽  
Roghayeh Pakdel ◽  
Hamidreza Sameni ◽  
Abbas Pakdel ◽  
Abbas Ali Vafaei ◽  
...  
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 618
Author(s):  
Yue Jin ◽  
Shihao Li ◽  
Yang Yu ◽  
Chengsong Zhang ◽  
Xiaojun Zhang ◽  
...  

A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.


2021 ◽  
Vol 22 (8) ◽  
pp. 4118
Author(s):  
Frederik Desmarais ◽  
Vincent Hervé ◽  
Karl F. Bergeron ◽  
Gaétan Ravaut ◽  
Morgane Perrotte ◽  
...  

Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. In rodent, the bulk of its expression occurs in the central nervous system. Despite this, ApoD has profound effects in peripheral tissues, indicating that neural ApoD may reach peripheral organs. We endeavor to determine if cerebral ApoD can reach the circulation and accumulate in peripheral tissues. Three hours was necessary for over 40% of all the radiolabeled human ApoD (hApoD), injected bilaterally, to exit the central nervous system (CNS). Once in circulation, hApoD accumulates mostly in the kidneys/urine, liver, and muscles. Accumulation specificity of hApoD in these tissues was strongly correlated with the expression of lowly glycosylated basigin (BSG, CD147). hApoD was observed to pass through bEnd.3 blood brain barrier endothelial cells monolayers. However, cyclophilin A did not impact hApoD internalization rates in bEnd.3, indicating that ApoD exit from the brain is either independent of BSG or relies on additional cell types. Overall, our data showed that ApoD can quickly and efficiently exit the CNS and reach the liver and kidneys/urine, organs linked to the recycling and excretion of lipids and toxins. This indicated that cerebral overexpression during neurodegenerative episodes may serve to evacuate neurotoxic ApoD ligands from the CNS.


2021 ◽  
Vol 10 (6) ◽  
pp. 1180
Author(s):  
Sai Karthik Kodeboyina ◽  
Tae Jin Lee ◽  
Kathryn Bollinger ◽  
Lane Ulrich ◽  
David Bogorad ◽  
...  

Purpose: The purpose of this study was to discover the aqueous humor proteomic changes associated with visual field indices in glaucoma patients. Methods: Aqueous humor samples were analyzed using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). The visual fields were analyzed with the Humphrey Visual Field analyzer. Statistical analyses were performed to discover the relationship between the aqueous humor proteins and visual field parameters including Pattern Standard Deviation (PSD), Visual Field Index (VFI), Mean Deviation (MD) and Glaucoma Hemifield Test (GHT). Results: In total, 222 proteins were identified in 49 aqueous humor samples. A total of 11, 9, 7, and 6 proteins were significantly correlated with PSD, VFI, MD, and GHT respectively. These proteins include apolipoprotein D, members of complement pathway (C1S, C4A, C4B, C8B, and CD14), and immunoglobulin family (IKHV3-9, IGKV2-28). Conclusion: Several proteins involved in immune responses (immunoglobulins and complement factors) and neurodegeneration (apolipoprotein D) were identified to be associated with abnormal visual field parameters. These findings provide targets for future studies investigating precise molecular mechanisms and new therapies for glaucomatous optic neuropathy.


2021 ◽  
Vol 22 (3) ◽  
pp. 1260
Author(s):  
Eva Martínez-Pinilla ◽  
Núria Rubio-Sardón ◽  
Rafael Peláez ◽  
Enrique García-Álvarez ◽  
Eva del Valle ◽  
...  

Apolipoprotein D (Apo D) overexpression is a general finding across neurodegenerative conditions so the role of this apolipoprotein in various neuropathologies such as multiple sclerosis (MS) has aroused a great interest in last years. However, its mode of action, as a promising compound for the development of neuroprotective drugs, is unknown. The aim of this work was to address the potential of Apo D to prevent the action of cuprizone (CPZ), a toxin widely used for developing MS models, in oligodendroglial and neuroblastoma cell lines. On one hand, immunocytochemical quantifications and gene expression measures showed that CPZ compromised neural mitochondrial metabolism but did not induce the expression of Apo D, except in extremely high doses in neurons. On the other hand, assays of neuroprotection demonstrated that antipsychotic drug, clozapine, induced an increase in Apo D synthesis only in the presence of CPZ, at the same time that prevented the loss of viability caused by the toxin. The effect of the exogenous addition of human Apo D, once internalized, was also able to directly revert the loss of cell viability caused by treatment with CPZ by a reactive oxygen species (ROS)-independent mechanism of action. Taken together, our results suggest that increasing Apo D levels, in an endo- or exogenous way, moderately prevents the neurotoxic effect of CPZ in a cell model that seems to replicate some features of MS which would open new avenues in the development of interventions to afford MS-related neuroprotection.


Sign in / Sign up

Export Citation Format

Share Document