scholarly journals Non-uniform relationship between salt status and aldosterone activity in patients with chronic kidney disease

2018 ◽  
Vol 132 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Alison H.M. Taylor ◽  
Alastair J. Rankin ◽  
Emily P. McQuarrie ◽  
E. Marie Freel ◽  
Natalie Z.M. Homer ◽  
...  

Background: Hypertension is prevalent in chronic kidney disease (CKD). Studies suggest that reduction in dietary salt intake reduces blood pressure (BP). We studied relationships between salt intake, BP and renin–angiotensin system regulation in order to establish if it is disordered in CKD. Methods: Mechanistic crossover study of CKD patients versus non-CKD controls. Participants underwent modified saline suppression test prior to randomization to either low or high salt diet for 5 days and then crossed over to the alternate diet. Angiotensin-II stimulation testing was performed in both salt states. BP, urea and electrolytes, and plasma aldosterone concentration (PAC) were measured. Results: Twenty-seven subjects were recruited (12 CKD, 15 control). There was no difference in age and baseline BP between the groups. Following administration of intravenous saline, systolic BP increased in CKD but not controls (131 ± 16 to 139 ± 14 mmHg, P=0.016 vs 125 ± 20 to 128 ± 22 mmHg, P=0.38). Median PAC reduced from 184 (124,340) to 95 (80,167) pmol in controls (P=0.003), but failed to suppress in CKD (230 (137,334) to 222 (147,326) pmol (P=0.17)). Following dietary salt modification, there was no change in BP in either group. Median PAC was lower following high salt compared with low salt diet in CKD and controls. There was a comparable increase in systolic BP in response to angiotensin-II in both groups. Discussion: We demonstrate dysregulation of aldosterone in CKD in response to salt loading with intravenous saline, but not to dietary salt modification.

Author(s):  
Dominique M Bovee ◽  
Estrellita Uijl ◽  
David Severs ◽  
Eloisa Rubio-Beltrán ◽  
Richard van Veghel ◽  
...  

Chronic kidney disease (CKD) contributes to hypertension, but the mechanisms are incompletely understood. To address this, we applied the 5/6th nephrectomy rat model to characterize hypertension and the response to dietary salt and renin-angiotensin inhibition. 5/6th nephrectomy caused low-renin, salt-sensitive hypertension with hyperkalemia and unsuppressed aldosterone. Compared to sham, 5/6Nx rats had lower NHE3, NKCC2, NCC, a-ENaC and Kir4.1, but higher SKG1, prostasin, g-ENaC, and Kir5.1. These differences correlated with plasma renin, aldosterone, and/or potassium. On a normal salt diet, adrenalectomy (0 ± 9 mmHg) and spironolactone (-11 ± 10 mmHg) prevented a progressive rise in blood pressure (10 ± 8 mmHg), and this was enhanced in combination with losartan (-41 ± 12 mmHg and -43 ± 9 mmHg). A high salt diet caused skin sodium and water accumulation and aggravated hypertension that could only be attenuated by spironolactone (-16 ± 7 mmHg) and in which the additive effect of losartan was lost. Spironolactone also increased natriuresis, reduced skin water accumulation and restored vasorelaxation. In summary, in the 5/6th nephrectomy rat CKD model, salt-sensitive hypertension develops with a selective increase in g-ENaC and despite appropriate transporter adaptations to low renin and hyperkalemia. With a normal salt diet, hypertension in 5/6th nephrectomy depends on angiotensin II and aldosterone, while a high salt diet causes more severe hypertension mediated through the mineralocorticoid receptor.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2779 ◽  
Author(s):  
Jetta J. Oppelaar ◽  
Liffert Vogt

The average dietary salt (i.e., sodium chloride) intake in Western society is about 10 g per day. This greatly exceeds the lifestyle recommendations by the WHO to limit dietary salt intake to 5 g. There is robust evidence that excess salt intake is associated with deleterious effects including hypertension, kidney damage and adverse cardiovascular health. In patients with chronic kidney disease, moderate reduction of dietary salt intake has important renoprotective effects and positively influences the efficacy of common pharmacological treatment regimens. During the past several years, it has become clear that besides influencing body fluid volume high salt also induces tissue remodelling and activates immune cell homeostasis. The exact pathophysiological pathway in which these salt-induced fluid-independent effects contribute to CKD is not fully elucidated, nonetheless it is clear that inflammation and the development of fibrosis play a major role in the pathogenic mechanisms of renal diseases. This review focuses on body fluid-independent effects of salt contributing to CKD pathogenesis and cardiovascular health. Additionally, the question whether better understanding of these pathophysiological pathways, related to high salt consumption, might identify new potential treatment options will be discussed.


2017 ◽  
Vol 125 (08) ◽  
pp. 571-576 ◽  
Author(s):  
Wen Wen ◽  
Zhaofei Wan ◽  
Dong Zhou ◽  
Juan Zhou ◽  
Zuyi Yuan

Abstract Background High dietary salt intake contributes to the development of autoimmune/inflammatory diseases including metabolic syndrome (MetS) which potassium supplementation can potentially reverse. T helper (Th) 17 cells as well as its production interleukin (IL)-17A are involved in the pathogenesis of MetS. The polarization of Th17 cells and enhanced IL-17A production induced by high salt might increase the risk of autoimmune/inflammatory diseases. Methods 45 normotensive subjects (aged 29 to 65 years) were enrolled from a rural community of Northern China at random. All of the participants were maintained on a low-salt (3 g/day) diet for 7 days, a high-salt (18 g/day) diet for 7 days, and then a high-salt diet with potassium supplementation (4.5 g/day, KCl) for another 7 days. Insulin resistance (IR) was determined based on the homeostasis model assessment index (HOMA-IR). Results Participants exhibited increased plasma insulin level, as well as progressed HOMA-IR, during a high-salt diet intervention, which potassium supplementation reversed. Moreover, after salt loading, the plasma IL-17A concentrations increased significantly (4.2±2.1 pg/mL to 9.7±5.1 pg/mL; P<0.01), whereas dropped considerably when dietary potassium was supplemented (9.7±5.1 pg/mL to 2.0±0.9 pg/mL; P<0.001). Statistically significant correlations were found between changes in HOMA-IR and changes in plasma IL-17A concentrations during the interventions (low- to high-salt: r=0.642, P<0.01; high-salt to potassium supplementation: r=0.703, P<0.01). Based on multivariate regression analysis, plasma IL-17A showed as an independent predictor of IR. Conclusions The amelioration of salt-loading-induced IR by potassium supplementation in participants may be related to the reduction in plasma IL-17A concentration.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258502
Author(s):  
Csenge Pajtók ◽  
Apor Veres-Székely ◽  
Róbert Agócs ◽  
Beáta Szebeni ◽  
Péter Dobosy ◽  
...  

Recent animal studies, as well as quantitative sodium MRI observations on humans demonstrated that remarkable amounts of sodium can be stored in the skin. It is also known that excess sodium in the tissues leads to inflammation in various organs, but its role in dermal pathophysiology has not been elucidated. Therefore, our aim was to study the effect of dietary salt loading on inflammatory process and related extracellular matrix (ECM) remodeling in the skin. To investigate the effect of high salt consumption on inflammation and ECM production in the skin mice were kept on normal (NSD) or high salt (HSD) diet and then dermatitis was induced with imiquimod (IMQ) treatment. The effect of high salt concentration on dermal fibroblasts (DF) and peripheral blood mononuclear cells (PBMC) was also investigated in vitro. The HSD resulted in increased sodium content in the skin of mice. Inflammatory cytokine Il17 expression was elevated in the skin of HSD mice. Expression of anti-inflammatory Il10 and Il13 decreased in the skin of HSD or HSD IMQ mice. The fibroblast marker Acta2 and ECM component Fn and Col1a1 decreased in HSD IMQ mice. Expression of ECM remodeling related Pdgfb and activation phosphorylated (p)-SMAD2/3 was lower in HSD IMQ mice. In PBMCs, production of IL10, IL13 and PDGFB was reduced due to high salt loading. In cultured DFs high salt concentration resulted in decreased cell motility and ECM production, as well. Our results demonstrate that high dietary salt intake is associated with increased dermal pro-inflammatory status. Interestingly, although inflammation induces the synthesis of ECM in most organs, the expression of ECM decreased in the inflamed skin of mice on high salt diet. Our data suggest that salt intake may alter the process of skin remodeling.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Emma J McMahon ◽  
Katrina L Campbell ◽  
Judith D Bauer ◽  
David W Mudge ◽  
Jaimon T Kelly

2006 ◽  
Vol 26 (3) ◽  
pp. 268-275 ◽  
Author(s):  
Charlotte Jones-Burton ◽  
Shiraz I. Mishra ◽  
Jeffrey C. Fink ◽  
Jeanine Brown ◽  
Weyinshet Gossa ◽  
...  

Author(s):  
Emma J McMahon ◽  
Katrina L Campbell ◽  
Judith D Bauer ◽  
David W Mudge

1998 ◽  
Vol 275 (2) ◽  
pp. R410-R417 ◽  
Author(s):  
Atsushi Sakima ◽  
Hiroshi Teruya ◽  
Masanobu Yamazato ◽  
Rijiko Matayoshi ◽  
Hiromi Muratani ◽  
...  

Systemic inhibition of nitric oxide synthase (NOS) evokes hypertension, which is enhanced by salt loading, partly via augmented sympathetic activity. We investigated whether inhibition of brain NOS elevates blood pressure (BP) in normotensive rats and, if so, whether the BP elevation is enhanced by salt loading. After a 2-wk low-salt (0.3%) diet, male Sprague-Dawley (SD) rats were divided into four groups. Groups 1 and 2 received a chronic intracerebroventricular infusion of 0.5 mg ⋅ kg−1 ⋅ day−1of N G-monomethyl-l-arginine (l-NMMA), and groups 3 and 4 were given artificial cerebrospinal fluid (aCSF). Groups 1 and 3 were placed on a high-salt (8%) diet, whereas groups 2 and 4 were on a low-salt diet. On day 9or 10, group 1 showed significantly higher mean arterial pressure (MAP) in a conscious unrestrained state (129 ± 3 mmHg vs. 114 ± 3, 113 ± 1, and 108 ± 3 mmHg in groups 2, 3, and 4, respectively, P < 0.05). On a high-salt diet, response of renal sympathetic nerve activity but not of BP to air-jet stress was significantly larger in rats givenl-NMMA than in rats given aCSF (29 ± 4% vs. 19 ± 3%, P < 0.05). When the intracerebroventricular infusions were continued for 3 wk, MAP was significantly higher in rats givenl-NMMA than in rats given aCSF irrespective of salt intake, although the difference was ∼7 mmHg. Thus chronic inhibition of NOS in the brain only slightly elevates BP in SD rats. Salt loading causes a more rapid rise in BP. The mechanisms of the BP elevation and its acceleration by salt loading remain to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document