scholarly journals Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: lessons from basic research (inclusive bats), light on conceivable therapies

2020 ◽  
Vol 134 (15) ◽  
pp. 1991-2017 ◽  
Author(s):  
Thiago Gomes Heck ◽  
Mirna Stela Ludwig ◽  
Matias Nunes Frizzo ◽  
Alberto Antonio Rasia-Filho ◽  
Paulo Ivo Homem de Bittencourt

Abstract The major risk factors to fatal outcome in COVID-19 patients, i.e., elderliness and pre-existing metabolic and cardiovascular diseases (CVD), share in common the characteristic of being chronic degenerative diseases of inflammatory nature associated with defective heat shock response (HSR). The molecular components of the HSR, the principal metabolic pathway leading to the physiological resolution of inflammation, is an anti-inflammatory biochemical pathway that involves molecular chaperones of the heat shock protein (HSP) family during homeostasis-threatening stressful situations (e.g., thermal, oxidative and metabolic stresses). The entry of SARS coronaviruses in target cells, on the other hand, aggravates the already-jeopardized HSR of this specific group of patients. In addition, cellular counterattack against virus involves interferon (IFN)-mediated inflammatory responses. Therefore, individuals with impaired HSR cannot resolve virus-induced inflammatory burst physiologically, being susceptible to exacerbated forms of inflammation, which leads to a fatal “cytokine storm”. Interestingly, some species of bats that are natural reservoirs of zoonotic viruses, including SARS-CoV-2, possess an IFN-based antiviral inflammatory response perpetually activated but do not show any sign of disease or cytokine storm. This is possible because bats present a constitutive HSR that is by far (hundreds of times) more intense and rapid than that of human, being associated with a high core temperature. Similarly in humans, fever is a physiological inducer of HSR while antipyretics, which block the initial phase of inflammation, impair the resolution phase of inflammation through the HSR. These findings offer a rationale for the reevaluation of patient care and fever reduction in SARS, including COVID-19.

2003 ◽  
Vol 64 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Angela Ianaro ◽  
Armando Ialenti ◽  
Pasquale Maffia ◽  
Paola Di Meglio ◽  
Massimo Di Rosa ◽  
...  

2019 ◽  
Vol 20 (15) ◽  
pp. 3793 ◽  
Author(s):  
Savina Apolloni ◽  
Francesca Caputi ◽  
Annabella Pignataro ◽  
Susanna Amadio ◽  
Paola Fabbrizio ◽  
...  

(1) Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial non-cell autonomous disease where activation of microglia and astrocytes largely contributes to motor neurons death. Heat shock proteins have been demonstrated to promote neuronal survival and exert a strong anti-inflammatory action in glia. Having previously shown that the pharmacological increase of the histamine content in the central nervous system (CNS) of SOD1-G93A mice decreases neuroinflammation, reduces motor neuron death, and increases mice life span, here we examined whether this effect could be mediated by an enhancement of the heat shock response. (2) Methods: Heat shock protein expression was analyzed in vitro and in vivo. Histamine was provided to primary microglia and NSC-34 motor neurons expressing the SOD1-G93A mutation. The brain permeable histamine precursor histidine was chronically administered to symptomatic SOD1-G93A mice. Spine density was measured by Golgi-staining in motor cortex of histidine-treated SOD1-G93A mice. (3) Results: We demonstrate that histamine activates the heat shock response in cultured SOD1-G93A microglia and motor neurons. In SOD1-G93A mice, histidine augments the protein content of GRP78 and Hsp70 in spinal cord and cortex, where the treatment also rescues type I motor neuron dendritic spine loss. (4) Conclusion: Besides the established histaminergic neuroprotective and anti-inflammatory effects, the induction of the heat shock response in the SOD1-G93A model by histamine confirms the importance of this pathway in the search for successful therapeutic solutions to treat ALS.


Biochimie ◽  
2019 ◽  
Vol 156 ◽  
pp. 33-46 ◽  
Author(s):  
Maciel Alencar Bruxel ◽  
Angela Maria Vicente Tavares ◽  
Luiz Domingues Zavarize Neto ◽  
Victor de Souza Borges ◽  
Helena Trevisan Schroeder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document