Impact of Background Noise Fluctuation and Reverberation on Response Time in a Speech Reception Task

2019 ◽  
Vol 62 (11) ◽  
pp. 4179-4195 ◽  
Author(s):  
Nicola Prodi ◽  
Chiara Visentin

Purpose This study examines the effects of reverberation and noise fluctuation on the response time (RT) to the auditory stimuli in a speech reception task. Method The speech reception task was presented to 76 young adults with normal hearing in 3 simulated listening conditions (1 anechoic, 2 reverberant). Speechlike stationary and fluctuating noise were used as maskers, in a wide range of signal-to-noise ratios. The speech-in-noise tests were presented in a closed-set format; data on speech intelligibility and RT (time elapsed from the offset of the auditory stimulus to the response selection) were collected. A slowing down in RTs was interpreted as an increase in listening effort. Results RTs slowed down in the more challenging signal-to-noise ratios, with increasing reverberation and for stationary compared to fluctuating noise, consistently with a fluctuating masking release scheme. When speech intelligibility was fixed, it was found that the estimated RTs were similar or faster for stationary compared to fluctuating noise, depending on the amount of reverberation. Conclusions The current findings add to the literature on listening effort for listeners with normal hearing by indicating that the addition of reverberation to fluctuating noise increases RT in a speech reception task. The results support the importance of integrating noise and reverberation to provide accurate predictors of real-world performance in clinical settings.

2018 ◽  
Vol 25 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Alice Lam ◽  
Murray Hodgson ◽  
Nicola Prodi ◽  
Chiara Visentin

This study evaluates the speech reception performance of native (L1) and non-native (L2) normal-hearing young adults in acoustical conditions containing varying amounts of reverberation and background noise. Two metrics were used and compared: the intelligibility score and the response time, taken as a behavioral measure of listening effort. Listening tests were conducted in auralized acoustical environments with L1 and L2 English-speaking university students. It was found that even though the two groups achieved the same, close to the maximum accuracy, L2 participants manifested longer response times in every acoustical condition, suggesting an increased involvement of cognitive resources in the speech reception process.


2015 ◽  
Vol 40 (1) ◽  
pp. 41-50
Author(s):  
Magdalena Krenz ◽  
Andrzej Wicher ◽  
Aleksander Sęk

Abstract To determine speech intelligibility using the test suggested by Ozimek et al. (2009), the subject composed sentences with the words presented on a computer screen. However, the number and the type of these words were chosen arbitrarily. The subject was always presented with 18, similarly sounding words. Therefore, the aim of this study was to determine whether the number and the type of alternative words used by Ozimek et al. (2009), had a significant influence on the speech intelligibility. The aim was also to determine an optimal number of alternative words: i.e., the number that did not affect the speech reception threshold (SRT) and not unduly lengthened the duration of the test. The study conducted using a group of 10 subjects with normal hearing showed that an increase in the number of words to choose from 12 to 30 increased the speech intelligibility by about 0.3 dB/6 words. The use of paronyms as alternative words as opposed to random words, leads to an increase in the speech intelligibility by about 0.6 dB, which is equivalent to a decrease in intelligibility by 15 percentage points. Enlarging the number of words to choose from, and switching alternative words to paronyms, led to an increase in response time from approximately 11 to 16 s. It seems that the use of paronyms as alternative words as well as using 12 or 18 words to choose from is the best choice when using the Polish Sentence Test (PST).


2019 ◽  
Vol 23 ◽  
pp. 233121651985459 ◽  
Author(s):  
Jan Rennies ◽  
Virginia Best ◽  
Elin Roverud ◽  
Gerald Kidd

Speech perception in complex sound fields can greatly benefit from different unmasking cues to segregate the target from interfering voices. This study investigated the role of three unmasking cues (spatial separation, gender differences, and masker time reversal) on speech intelligibility and perceived listening effort in normal-hearing listeners. Speech intelligibility and categorically scaled listening effort were measured for a female target talker masked by two competing talkers with no unmasking cues or one to three unmasking cues. In addition to natural stimuli, all measurements were also conducted with glimpsed speech—which was created by removing the time–frequency tiles of the speech mixture in which the maskers dominated the mixture—to estimate the relative amounts of informational and energetic masking as well as the effort associated with source segregation. The results showed that all unmasking cues as well as glimpsing improved intelligibility and reduced listening effort and that providing more than one cue was beneficial in overcoming informational masking. The reduction in listening effort due to glimpsing corresponded to increases in signal-to-noise ratio of 8 to 18 dB, indicating that a significant amount of listening effort was devoted to segregating the target from the maskers. Furthermore, the benefit in listening effort for all unmasking cues extended well into the range of positive signal-to-noise ratios at which speech intelligibility was at ceiling, suggesting that listening effort is a useful tool for evaluating speech-on-speech masking conditions at typical conversational levels.


1995 ◽  
Vol 38 (1) ◽  
pp. 211-221 ◽  
Author(s):  
Ronald A. van Buuren ◽  
Joost M. Festen ◽  
Reinier Plomp

The long-term average frequency spectrum of speech was modified to 25 target frequency spectra in order to determine the effect of each of these spectra on speech intelligibility in noise and on sound quality. Speech intelligibility was evaluated using the test as developed by Plomp and Mimpen (1979), whereas sound quality was examined through judgments of loudness, sharpness, clearness, and pleasantness of speech fragments. Subjects had different degrees of sensorineural hearing loss and sloping audiograms, but not all of them were hearing aid users. The 25 frequency spectra were defined such that the entire dynamic range of each listener, from dB above threshold to 5 dB below UCL, was covered. Frequency shaping of the speech was carried out on-line by means of Finite Impulse Response (FIR) filters. The tests on speech reception in noise indicated that the Speech-Reception Thresholds (SRTs) did not differ significantly for the majority of spectra. Spectra with high levels, especially at low frequencies (probably causing significant upward spread of masking), and also those with steep negative slopes resulted in significantly higher SRTs. Sound quality judgments led to conclusions virtually identical to those from the SRT data: frequency spectra with an unacceptably low sound quality were in most of the cases significantly worse on the SRT test as well. Because the SRT did not vary significantly among the majority of frequency spectra, it was concluded that a wide range of spectra between the threshold and UCL levels of listeners with hearing losses is suitable for the presentation of speech energy. This is very useful in everyday listening, where the frequency spectrum of speech may vary considerably.


2002 ◽  
Vol 13 (01) ◽  
pp. 038-049 ◽  
Author(s):  
Gabrielle H. Saunders ◽  
Kathleen M. Cienkowski

Measurement of hearing aid outcome is particularly difficult because there are numerous dimensions to consider (e.g., performance, satisfaction, benefit). Often there are discrepancies between scores in these dimensions. It is difficult to reconcile these discrepancies because the materials and formats used to measure each dimension are so very different. We report data obtained with an outcome measure that examines both objective and subjective dimensions with the same test format and materials and gives results in the same unit of measurement (signal-to-noise ratio). Two variables are measured: a “performance” speech reception threshold and a “perceptual” speech reception threshold. The signal-to-noise ratio difference between these is computed to determine the perceptual-performance discrepancy (PPDIS). The results showed that, on average, 48 percent of the variance in subjective ratings of a hearing aid could be explained by a combination of the performance speech reception threshold and the PPDIS. These findings suggest that the measure is potentially a valuable clinical tool.


2015 ◽  
Vol 26 (06) ◽  
pp. 572-581 ◽  
Author(s):  
Stanley Sheft ◽  
Min-Yu Cheng ◽  
Valeriy Shafiro

Background: Past work has shown that low-rate frequency modulation (FM) may help preserve signal coherence, aid segmentation at word and syllable boundaries, and benefit speech intelligibility in the presence of a masker. Purpose: This study evaluated whether difficulties in speech perception by cochlear implant (CI) users relate to a deficit in the ability to discriminate among stochastic low-rate patterns of FM. Research Design: This is a correlational study assessing the association between the ability to discriminate stochastic patterns of low-rate FM and the intelligibility of speech in noise. Study Sample: Thirteen postlingually deafened adult CI users participated in this study. Data Collection and Analysis: Using modulators derived from 5-Hz lowpass noise applied to a 1-kHz carrier, thresholds were measured in terms of frequency excursion both in quiet and with a speech-babble masker present, stimulus duration, and signal-to-noise ratio in the presence of a speech-babble masker. Speech perception ability was assessed in the presence of the same speech-babble masker. Relationships were evaluated with Pearson product–moment correlation analysis with correction for family-wise error, and commonality analysis to determine the unique and common contributions across psychoacoustic variables to the association with speech ability. Results: Significant correlations were obtained between masked speech intelligibility and three metrics of FM discrimination involving either signal-to-noise ratio or stimulus duration, with shared variance among the three measures accounting for much of the effect. Compared to past results from young normal-hearing adults and older adults with either normal hearing or a mild-to-moderate hearing loss, mean FM discrimination thresholds obtained from CI users were higher in all conditions. Conclusions: The ability to process the pattern of frequency excursions of stochastic FM may, in part, have a common basis with speech perception in noise. Discrimination of differences in the temporally distributed place coding of the stimulus could serve as this common basis for CI users.


2009 ◽  
Vol 20 (01) ◽  
pp. 028-039 ◽  
Author(s):  
Elizabeth M. Adams ◽  
Robert E. Moore

Purpose: To study the effect of noise on speech rate judgment and signal-to-noise ratio threshold (SNR50) at different speech rates (slow, preferred, and fast). Research Design: Speech rate judgment and SNR50 tasks were completed in a normal-hearing condition and a simulated hearing-loss condition. Study Sample: Twenty-four female and six male young, normal-hearing participants. Results: Speech rate judgment was not affected by background noise regardless of hearing condition. Results of the SNR50 task indicated that, as speech rate increased, performance decreased for both hearing conditions. There was a moderate correlation between speech rate judgment and SNR50 with the various speech rates, such that as judgment of speech rate increased from too slow to too fast, performance deteriorated. Conclusions: These findings can be used to support the need for counseling patients and their families about the potential advantages to using average speech rates or rates that are slightly slowed while conversing in the presence of background noise.


2020 ◽  
Author(s):  
Tom Gajęcki ◽  
Waldo Nogueira

Normal hearing listeners have the ability to exploit the audio input perceived by each ear to extract target information in challenging listening scenarios. Bilateral cochlear implant (BiCI) users, however, do not benefit as much as normal hearing listeners do from a bilateral input. In this study, we investigate the effect that bilaterally linked band selection, bilaterally synchronized electrical stimulation and ideal binary masks (IdBMs) have on the ability of 10 BiCIs to understand speech in background noise. The performance was assessed through a sentence-based speech intelligibility test, in a scenario where the speech signal was presented from the front and the interfering noise from one side. The linked band selection relies on the most favorable signal-to-noise-ratio (SNR) ear, which will select the bands to be stimulated for both CIs. Results show that no benefit from adding a second CI to the most favorable SNR side was achieved for any of the tested bilateral conditions. However, when using both devices, speech perception results show that performing linked band selection, besides delivering bilaterally synchronized electrical stimulation, leads to an improvement compared to standard clinical setups. Moreover, the outcomes of this work show that by applying IdBMs, subjects achieve speech intelligibility scores similar to the ones without background noise.


Sign in / Sign up

Export Citation Format

Share Document