Evaluation of a Wide Range of AmplitudeFrequency Responses for the Hearing Impaired

1995 ◽  
Vol 38 (1) ◽  
pp. 211-221 ◽  
Author(s):  
Ronald A. van Buuren ◽  
Joost M. Festen ◽  
Reinier Plomp

The long-term average frequency spectrum of speech was modified to 25 target frequency spectra in order to determine the effect of each of these spectra on speech intelligibility in noise and on sound quality. Speech intelligibility was evaluated using the test as developed by Plomp and Mimpen (1979), whereas sound quality was examined through judgments of loudness, sharpness, clearness, and pleasantness of speech fragments. Subjects had different degrees of sensorineural hearing loss and sloping audiograms, but not all of them were hearing aid users. The 25 frequency spectra were defined such that the entire dynamic range of each listener, from dB above threshold to 5 dB below UCL, was covered. Frequency shaping of the speech was carried out on-line by means of Finite Impulse Response (FIR) filters. The tests on speech reception in noise indicated that the Speech-Reception Thresholds (SRTs) did not differ significantly for the majority of spectra. Spectra with high levels, especially at low frequencies (probably causing significant upward spread of masking), and also those with steep negative slopes resulted in significantly higher SRTs. Sound quality judgments led to conclusions virtually identical to those from the SRT data: frequency spectra with an unacceptably low sound quality were in most of the cases significantly worse on the SRT test as well. Because the SRT did not vary significantly among the majority of frequency spectra, it was concluded that a wide range of spectra between the threshold and UCL levels of listeners with hearing losses is suitable for the presentation of speech energy. This is very useful in everyday listening, where the frequency spectrum of speech may vary considerably.

2016 ◽  
Vol 14 ◽  
pp. 25-29
Author(s):  
Miroslav Kotzev ◽  
Matthias Kreitlow ◽  
Frank Gronwald

Abstract. This work addresses the design of two ultra-wideband antennas for the application of transient field measurements that are characterized by frequency spectra that typically range from a few MHz to several GHz. The motivation for their design is the excitation of high power transient pulses, such as double exponential or damped sinusoidal pulses, within highly resonant metallic enclosures. The antenna design is based on two independent numerical full-wave solvers and it is aimed to achieve a low return loss over a wide range of frequencies together with a high pulse fidelity. It turns out that antennas of the conical and discone type do achieve satisfactory broadband characteristics while limitations towards low frequencies persist. Also the concept of fidelity factor turns out as advantageous to determine whether the proposed antennas allow transmitting certain broadband pulse forms.


2019 ◽  
Vol 62 (11) ◽  
pp. 4179-4195 ◽  
Author(s):  
Nicola Prodi ◽  
Chiara Visentin

Purpose This study examines the effects of reverberation and noise fluctuation on the response time (RT) to the auditory stimuli in a speech reception task. Method The speech reception task was presented to 76 young adults with normal hearing in 3 simulated listening conditions (1 anechoic, 2 reverberant). Speechlike stationary and fluctuating noise were used as maskers, in a wide range of signal-to-noise ratios. The speech-in-noise tests were presented in a closed-set format; data on speech intelligibility and RT (time elapsed from the offset of the auditory stimulus to the response selection) were collected. A slowing down in RTs was interpreted as an increase in listening effort. Results RTs slowed down in the more challenging signal-to-noise ratios, with increasing reverberation and for stationary compared to fluctuating noise, consistently with a fluctuating masking release scheme. When speech intelligibility was fixed, it was found that the estimated RTs were similar or faster for stationary compared to fluctuating noise, depending on the amount of reverberation. Conclusions The current findings add to the literature on listening effort for listeners with normal hearing by indicating that the addition of reverberation to fluctuating noise increases RT in a speech reception task. The results support the importance of integrating noise and reverberation to provide accurate predictors of real-world performance in clinical settings.


2013 ◽  
Vol 24 (04) ◽  
pp. 307-328 ◽  
Author(s):  
Joshua G.W. Bernstein ◽  
Van Summers ◽  
Elena Grassi ◽  
Ken W. Grant

Background: Hearing-impaired (HI) individuals with similar ages and audiograms often demonstrate substantial differences in speech-reception performance in noise. Traditional models of speech intelligibility focus primarily on average performance for a given audiogram, failing to account for differences between listeners with similar audiograms. Improved prediction accuracy might be achieved by simulating differences in the distortion that speech may undergo when processed through an impaired ear. Although some attempts to model particular suprathreshold distortions can explain general speech-reception deficits not accounted for by audibility limitations, little has been done to model suprathreshold distortion and predict speech-reception performance for individual HI listeners. Auditory-processing models incorporating individualized measures of auditory distortion, along with audiometric thresholds, could provide a more complete understanding of speech-reception deficits by HI individuals. A computational model capable of predicting individual differences in speech-recognition performance would be a valuable tool in the development and evaluation of hearing-aid signal-processing algorithms for enhancing speech intelligibility. Purpose: This study investigated whether biologically inspired models simulating peripheral auditory processing for individual HI listeners produce more accurate predictions of speech-recognition performance than audiogram-based models. Research Design: Psychophysical data on spectral and temporal acuity were incorporated into individualized auditory-processing models consisting of three stages: a peripheral stage, customized to reflect individual audiograms and spectral and temporal acuity; a cortical stage, which extracts spectral and temporal modulations relevant to speech; and an evaluation stage, which predicts speech-recognition performance by comparing the modulation content of clean and noisy speech. To investigate the impact of different aspects of peripheral processing on speech predictions, individualized details (absolute thresholds, frequency selectivity, spectrotemporal modulation [STM] sensitivity, compression) were incorporated progressively, culminating in a model simulating level-dependent spectral resolution and dynamic-range compression. Study Sample: Psychophysical and speech-reception data from 11 HI and six normal-hearing listeners were used to develop the models. Data Collection and Analysis: Eleven individualized HI models were constructed and validated against psychophysical measures of threshold, frequency resolution, compression, and STM sensitivity. Speech-intelligibility predictions were compared with measured performance in stationary speech-shaped noise at signal-to-noise ratios (SNRs) of −6, −3, 0, and 3 dB. Prediction accuracy for the individualized HI models was compared to the traditional audibility-based Speech Intelligibility Index (SII). Results: Models incorporating individualized measures of STM sensitivity yielded significantly more accurate within-SNR predictions than the SII. Additional individualized characteristics (frequency selectivity, compression) improved the predictions only marginally. A nonlinear model including individualized level-dependent cochlear-filter bandwidths, dynamic-range compression, and STM sensitivity predicted performance more accurately than the SII but was no more accurate than a simpler linear model. Predictions of speech-recognition performance simultaneously across SNRs and individuals were also significantly better for some of the auditory-processing models than for the SII. Conclusions: A computational model simulating individualized suprathreshold auditory-processing abilities produced more accurate speech-intelligibility predictions than the audibility-based SII. Most of this advantage was realized by a linear model incorporating audiometric and STM-sensitivity information. Although more consistent with known physiological aspects of auditory processing, modeling level-dependent changes in frequency selectivity and gain did not result in more accurate predictions of speech-reception performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibtissame Khaoua ◽  
Guillaume Graciani ◽  
Andrey Kim ◽  
François Amblard

AbstractFor a wide range of purposes, one faces the challenge to detect light from extremely faint and spatially extended sources. In such cases, detector noises dominate over the photon noise of the source, and quantum detectors in photon counting mode are generally the best option. Here, we combine a statistical model with an in-depth analysis of detector noises and calibration experiments, and we show that visible light can be detected with an electron-multiplying charge-coupled devices (EM-CCD) with a signal-to-noise ratio (SNR) of 3 for fluxes less than $$30\,{\text{photon}}\,{\text{s}}^{ - 1} \,{\text{cm}}^{ - 2}$$ 30 photon s - 1 cm - 2 . For green photons, this corresponds to 12 aW $${\text{cm}}^{ - 2}$$ cm - 2 ≈ $$9{ } \times 10^{ - 11}$$ 9 × 10 - 11 lux, i.e. 15 orders of magnitude less than typical daylight. The strong nonlinearity of the SNR with the sampling time leads to a dynamic range of detection of 4 orders of magnitude. To detect possibly varying light fluxes, we operate in conditions of maximal detectivity $${\mathcal{D}}$$ D rather than maximal SNR. Given the quantum efficiency $$QE\left( \lambda \right)$$ Q E λ of the detector, we find $${ \mathcal{D}} = 0.015\,{\text{photon}}^{ - 1} \,{\text{s}}^{1/2} \,{\text{cm}}$$ D = 0.015 photon - 1 s 1 / 2 cm , and a non-negligible sensitivity to blackbody radiation for T > 50 °C. This work should help design highly sensitive luminescence detection methods and develop experiments to explore dynamic phenomena involving ultra-weak luminescence in biology, chemistry, and material sciences.


1987 ◽  
Vol 121 ◽  
pp. 287-293
Author(s):  
C.J. Schalinski ◽  
P. Biermann ◽  
A. Eckart ◽  
K.J. Johnston ◽  
T.Ph. Krichbaum ◽  
...  

A complete sample of 13 flat spectrum radio sources is investigated over a wide range of frequencies and spatial resolutions. SSC-calculations lead to the prediction of bulk relativistic motion in all sources. So far 6 out of 7 sources observed with sufficient dynamic range by means of VLBI show evidence for apparent superluminal motion.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Liao ◽  
Lan Yang

AbstractTemperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.


2020 ◽  
Vol 31 (08) ◽  
pp. 590-598
Author(s):  
Li Xu ◽  
Solveig C. Voss ◽  
Jing Yang ◽  
Xianhui Wang ◽  
Qian Lu ◽  
...  

Abstract Background Mandarin Chinese has a rich repertoire of high-frequency speech sounds. This may pose a remarkable challenge to hearing-impaired listeners who speak Mandarin Chinese because of their high-frequency sloping hearing loss. An adaptive nonlinear frequency compression (adaptive NLFC) algorithm has been implemented in contemporary hearing aids to alleviate the problem. Purpose The present study examined the performance of speech perception and sound-quality rating in Mandarin-speaking hearing-impaired listeners using hearing aids fitted with adaptive NLFC (i.e., SoundRecover2 or SR2) at different parameter settings. Research Design Hearing-impaired listeners' phoneme detection thresholds, speech reception thresholds, and sound-quality ratings were collected with various SR2 settings. Study Sample The participants included 15 Mandarin-speaking adults aged 32 to 84 years old who had symmetric sloping severe-to-profound sensorineural hearing loss. Intervention The participants were fitted bilaterally with Phonak Naida V90-SP hearing aids. Data Collection and Analysis The outcome measures included phoneme detection threshold using the Mandarin Phonak Phoneme Perception test, speech reception threshold using the Mandarin hearing in noise test (M-HINT), and sound-quality ratings on human speech in quiet and noise, bird chirps, and music in quiet. For each test, five experimental settings were applied and compared: SR2-off, SR2-weak, SR2-default, SR2-strong 1, and SR2-strong 2. Results The results showed that listeners performed significantly better with SR2-strong 1 and SR2-strong 2 settings than with SR2-off or SR2-weak settings for speech reception threshold and phoneme detection threshold. However, no significant improvement was observed in sound-quality ratings among different settings. Conclusions These preliminary findings suggested that the adaptive NLFC algorithm provides perceptual benefit to Mandarin-speaking people with severe-to-profound hearing loss.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4268
Author(s):  
Hongzhi Ouyang ◽  
Xueling Yao ◽  
Jingliang Chen

Transient magnetic field sensors are used in various electromagnetic environment measurement scenarios. In this paper, a novel magnetic field sensor based on a digital integrator was developed. The antenna was a small B-DOT loop. It was designed optimally for the simulation. The magnetic field signal was digitally integrated with the improved Al-Alaoui algorithm, resulting in less integration error. To compensate for the bandwidth loss of the optical fiber system, we specially designed an FIR (finite impulse response) filter for frequency compensation. The circuit was described, and the transimpedance amplifier was specially designed to ensure the low noise characteristic of the receiver. The sensitivity of the sensor was calibrated at 68.2 A·m−1/mV, the dynamic range was 50 dB (1–300 kA/m), the linear correlation coefficient was 0.96, and the bandwidth was greater than 100 MHz. It was tested and verified under the action of an A-type lightning current. The sensor exhibited high-precision performance and flat amplitude-frequency characteristics. Therefore, it is suitable for lightning positioning, partial discharge testing, electromagnetic compatibility management, and other applications.


2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


2021 ◽  
Vol 69 (2) ◽  
pp. 173-179
Author(s):  
Nilolina Samardzic ◽  
Brian C.J. Moore

Traditional methods for predicting the intelligibility of speech in the presence of noise inside a vehicle, such as the Articulation Index (AI), the Speech Intelligibility Index (SII), and the Speech Transmission Index (STI), are not accurate, probably because they do not take binaural listening into account; the signals reaching the two ears can differ markedly depending on the positions of the talker and listener. We propose a new method for predicting the intelligibility of speech in a vehicle, based on the ratio of the binaural loudness of the speech to the binaural loudness of the noise, each calculated using the method specified in ISO 532-2 (2017). The method was found to give accurate predictions of the speech reception threshold (SRT) measured under a variety of conditions and for different positions of the talker and listener in a car. The typical error in the predicted SRT was 1.3 dB, which is markedly smaller than estimated using the SII and STI (2.0 dB and 2.1 dB, respectively).


Sign in / Sign up

Export Citation Format

Share Document