Evaluation of Hearing-Impaired Listeners Using a Nonsense-Syllable Test II. Syllable Recognition and Consonant Confusion Patterns

1982 ◽  
Vol 25 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Judy R. Dubno ◽  
Donald D. Dirks ◽  
Laurn R. Langhofer

Syllable recognition ability and consonant confusion patterns were evaluated for 38 listeners with mild-to-moderate sensorineural hearing loss using the closed-set Nonsense-Syllable Test (NST). Performance for these materials varies as a function of consonant voicing, the position of the consonant in the syllable, and the accompanying vowel. Scores for listeners with steeply sloping audiometric configurations were consistently poorer than those for listeners with gradually sloping or flat audiograms. Consonant confusion analyses revealed place of articulation errors to be the most frequent, regardless of the listener's audiometric configuration. Analysis of consonant confusion patterns indicates the existence of a systematic relationship between consonant confusions and audiometric configuration. The NST findings are discussed in terms of the test's potential use and are compared to the results of existing confusion analyses.

1975 ◽  
Vol 18 (3) ◽  
pp. 444-455 ◽  
Author(s):  
Brian E. Walden ◽  
Allen A. Montgomery

Judgments of consonant similarity were obtained from subjects who had normal hearing, high-frequency sensorineural hearing loss, or relatively flat sensorineural hearing loss. The individual differences model through program INDSCAL was used to derive a set of perceptual features empirically from the similarity judgments, and to group the subjects on the basis of strength of feature usage. The analysis revealed that sonorance was the dominant dimension in the similarity judgments of the subjects with high-frequency hearing losses, while sibilance tended to dominate the judgments of the subjects with flat audiometric configurations. The normal-hearing subjects tended to weight these two dimensions approximately equally. These differences in similarity judgments were observed based upon audiometric configuration, despite the fact that the two hearing-impaired groups were not unique in word-recognition ability.


1999 ◽  
Vol 42 (4) ◽  
pp. 773-784 ◽  
Author(s):  
Christopher W. Turner ◽  
Siu-Ling Chi ◽  
Sarah Flock

Consonant recognition was measured as a function of the degree of spectral resolution of the speech stimulus in normally hearing listeners and listeners with moderate sensorineural hearing loss. Previous work (Turner, Souza, and Forget, 1995) has shown that listeners with sensorineural hearing loss could recognize consonants as well as listeners with normal hearing when speech was processed to have only one channel of spectral resolution. The hypothesis tested in the present experiment was that when speech was limited to a small number of spectral channels, both normally hearing and hearing-impaired listeners would continue to perform similarly. As the stimuli were presented with finer degrees of spectral resolution, and the poorer-than-normal spectral resolving abilities of the hearing-impaired listeners became a limiting factor, one would predict that the performance of the hearing-impaired listeners would then become poorer than the normally hearing listeners. Previous research on the frequency-resolution abilities of listeners with mild-to-moderate hearing loss suggests that these listeners have critical bandwidths three to four times larger than do listeners with normal hearing. In the present experiment, speech stimuli were processed to have 1, 2, 4, or 8 channels of spectral information. Results for the 1-channel speech condition were consistent with the previous study in that both groups of listeners performed similarly. However, the hearing-impaired listeners performed more poorly than the normally hearing listeners for all other conditions, including the 2-channel speech condition. These results would appear to contradict the original hypothesis, in that listeners with moderate sensorineural hearing loss would be expected to have at least 2 channels of frequency resolution. One possibility is that the frequency resolution of hearing-impaired listeners may be much poorer than previously estimated; however, a subsequent filtered speech experiment did not support this explanation. The present results do indicate that although listeners with hearing loss are able to use the temporal-envelope information of a single channel in a normal fashion, when given the opportunity to combine information across more than one channel, they show deficient performance.


2013 ◽  
Vol 24 (04) ◽  
pp. 258-273 ◽  
Author(s):  
Ken W. Grant ◽  
Therese C. Walden

Background: Traditional audiometric measures, such as pure-tone thresholds or unaided word-recognition in quiet, appear to be of marginal use in predicting speech understanding by hearing-impaired (HI) individuals in background noise with or without amplification. Suprathreshold measures of auditory function (tolerance of noise, temporal and frequency resolution) appear to contribute more to success with amplification and may describe more effectively the distortion component of hearing. However, these measures are not typically measured clinically. When combined with measures of audibility, suprathreshold measures of auditory distortion may provide a much more complete understanding of speech deficits in noise by HI individuals. Purpose: The primary goal of this study was to investigate the relationship among measures of speech recognition in noise, frequency selectivity, temporal acuity, modulation masking release, and informational masking in adult and elderly patients with sensorineural hearing loss to determine whether peripheral distortion for suprathreshold sounds contributes to the varied outcomes experienced by patients with sensorineural hearing loss listening to speech in noise. Research Design: A correlational study. Study Sample: Twenty-seven patients with sensorineural hearing loss and four adults with normal hearing were enrolled in the study. Data Collection and Analysis: The data were collected in a sound attenuated test booth. For speech testing, subjects' verbal responses were scored by the experimenter and entered into a custom computer program. For frequency selectivity and temporal acuity measures, subject responses were recorded via a touch screen. Simple correlation, step-wise multiple linear regression analyses and a repeated analysis of variance were performed. Results: Results showed that the signal-to-noise ratio (SNR) loss could only be partially predicted by a listener's thresholds or audibility measures such as the Speech Intelligibility Index (SII). Correlations between SII and SNR loss were higher using the Hearing-in-Noise Test (HINT) than the Quick Speech-in-Noise test (QSIN) with the SII accounting for 71% of the variance in SNR loss for the HINT but only 49% for the QSIN. However, listener age and the addition of suprathreshold measures improved the prediction of SNR loss using the QSIN, accounting for nearly 71% of the variance. Conclusions: Two standard clinical speech-in-noise tests, QSIN and HINT, were used in this study to obtain a measure of SNR loss. When administered clinically, the QSIN appears to be less redundant with hearing thresholds than the HINT and is a better indicator of a patient's suprathreshold deficit and its impact on understanding speech in noise. Additional factors related to aging, spectral resolution, and, to a lesser extent, temporal resolution improved the ability to predict SNR loss measured with the QSIN. For the HINT, a listener's audibility and age were the only two significant factors. For both QSIN and HINT, roughly 25–30% of the variance in individual differences in SNR loss (i.e., the dB difference in SNR between an individual HI listener and a control group of NH listeners at a specified performance level, usually 50% word or sentence recognition) remained unexplained, suggesting the need for additional measures of suprathreshold acuity (e.g., sensitivity to temporal fine structure) or cognitive function (e.g., memory and attention) to further improve the ability to understand individual variability in SNR loss.


2014 ◽  
Vol 25 (06) ◽  
pp. 549-561 ◽  
Author(s):  
Helen Glyde ◽  
Sharon Cameron ◽  
Harvey Dillon ◽  
Louise Hickson

Background: The ability to use interaural cues to segregate target speech from competing signals allows people with normal hearing to understand speech at significantly poorer signal-to-noise ratios. This ability, referred to as spatial processing ability or spatial release from masking, has been shown to be deficient in people with a sensorineural hearing loss even after amplification is applied. Spatial processing deficits in a population of children with auditory processing deficits have been found to be remediable through the use of a deficit-specific auditory training program called the LiSN & Learn. Purpose: The aim of the present study was to determine whether LiSN & Learn auditory training could improve the spatial processing ability of hearing-impaired adults and children. In addition, the research investigated whether the age of the participant would affect the efficacy of the training program. Research Design: In a repeated-measures design, participants’ spatial processing ability was assessed pretraining and posttraining using the Listening in Spatialized Noise-Sentences Test (LiSN-S). Questionnaire responses were also collected from participants pretraining and posttraining to provide a subjective measure of real-life listening difficulty. Between the two assessment periods, participants were asked to train with the LiSN & Learn for 15 min per day, 5 days per week for 60 training sessions. Study Sample: Participants were five children (aged 6–11 yr) and five adults (aged 60–74 yr) with up to a moderate sensorineural hearing loss. Data Collection and Analysis: The LiSN & Learn auditory training software incorporates five computer games in which target sentences, processed with head-related transfer functions, are perceived as coming from 0° azimuth, and simultaneous distracting speech streams are perceived as coming from ±90° azimuth. Participants are tasked with identifying a word from the target sentence and selecting the corresponding picture from a selection of four images displayed on the screen. The signal-to-noise ratio is adapted based on whether the response given is correct or incorrect. Results: Despite an average improvement of 10 dB on the LiSN & Learn training program, no significant improvements were seen posttraining in either of the spatially separated conditions of the LiSN-S (p ranging 0.47–0.75). A 1.2 dB improvement was found in the baseline condition of the LiSN-S, which incorporates no spatial separation between distracter and target stimuli (p < 0.01). Age did not significantly affect training outcomes (p = 0.21). No significant improvements were found posttraining on the self-report questionnaires (p = 0.84 and p = 0.20). Conclusions: This study has demonstrated that LiSN & Learn training does not significantly improve spatial processing deficits in adults or children with a sensorineural hearing loss. As auditory training did not prove to be effective, further research should be directed toward the development of hearing aid processing schemes that will compensate for the degraded interaural time difference and interaural level difference cues which underpin spatial processing.


1979 ◽  
Vol 44 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Nilda Morgenstern ◽  
Barbara Jones-Crymes

Impedance audiometry provides a reliable technique for identifying undetected middle ear pathologies in children with severe to profound sensorineural hearing loss. In this study, tympanograms were obtained on 104 children with sensorineural hearing losses of 60 dB or more. The tympanograms were classified according to type and were compared for bilateral similarity. A high percentage of the younger children had abnormal tympanograms, with almost half of these children having the same type of abnormal tympanogram bilaterally. The use of impedance audiometry as a screening technique for hearing-impaired school-age children is discussed.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 360
Author(s):  
Jan Boeckhaus ◽  
Nicola Strenzke ◽  
Celine Storz ◽  
Oliver Gross ◽  
◽  
...  

Most adults with Alport syndrome (AS) suffer from progressive sensorineural hearing loss. However, little is known about the early characteristics of hearing loss in children with AS. As a part of the EARLY PRO-TECT Alport trial, this study was the first clinical trial ever to investigate hearing loss in children with AS over a timespan of up to six years Nine of 51 children (18%) had hearing impairment. Audiograms were divided into three age groups: in the 5–9-year-olds, the 4-pure tone average (4PTA) was 8.9 decibel (dB) (n = 15) in those with normal hearing and 43.8 dB (n = 2, 12%) in those with hearing impairment. Among the 10–13-year-olds, 4PTA was 4.8 dB (healthy, n = 12) and 41.4 dB (hearing impaired, n = 6.33%). For the 14–20-year-olds, the 4PTA was 7.0 dB (healthy; n = 9) and 48.2 dB (hearing impaired, n = 3.25%). On average, hearing thresholds of the hearing impaired group increased, especially at frequencies between 1–3 kHz. In conclusion, 18% of children developed hearing loss, with a maximum hearing loss in the audiograms at 1–3 kHz. The percentage of children with hearing impairment increased from 10% at baseline to 18% at end of trial as did the severity of hearing loss.


1995 ◽  
Vol 112 (5) ◽  
pp. P120-P120
Author(s):  
Nancy M. Young ◽  
Edwin M. Monsell

Educational objectives: To order appropriate diagnostic tests in children with newly identified sensorineural hearing loss and to provide better counseling of families of hearing-impaired infants and children.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sarie Martens ◽  
Ingeborg Dhooge ◽  
Cleo Dhondt ◽  
Saartje Vanaudenaerde ◽  
Marieke Sucaet ◽  
...  

AbstractDue to the close anatomical relationship between the auditory and vestibular end organs, hearing-impaired children have a higher risk for vestibular dysfunction, which can affect their (motor) development. Unfortunately, vestibular dysfunction often goes unnoticed, as vestibular assessment in these children is not standard of care nowadays. To timely detect vestibular dysfunction, the Vestibular Infant Screening–Flanders (VIS–Flanders) project has implemented a basic vestibular screening test for hearing-impaired infants in Flanders (Belgium) with a participation rate of 86.7% during the first year and a half. The cervical Vestibular Evoked Myogenic Potentials (cVEMP) test was applied as vestibular screening tool to map the occurrence of vestibular (mainly saccular) dysfunction in this population. At the age of 6 months, 184 infants were screened. No refers on vestibular screening were observed in infants with permanent conductive hearing loss. In infants with permanent sensorineural hearing loss, a cVEMP refer rate of 9.5% was observed. Failure was significantly more common in infants with severe-profound compared to those with mild-moderate sensorineural hearing loss (risk ratio = 9.8). Since this is the first regional study with a large sample size and successful participation rate, the VIS–Flanders project aims to set an example for other regions worldwide.


1982 ◽  
Vol 25 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Judy R. Dubno ◽  
Donald D. Dirks

The reliability of a closed-set Nonsense-Syllable Test was determined on a group of 38 listeners with mild-to-moderate sensorineural hearing loss. Eight randomizations of the 91-item test (four trials on each of two days) were presented monaurally, under earphones, at 90 dB SPL with a cafeteria background noise set at a +20-dB S/N ratio. Performance under these conditions ranged from 21.4 to 91.2%, reflecting the wide range of syllable-recognition ability of these subjects. Reliability of the eight measurements was determined by analysis of variance and analysis of covariance structure (parallel-test modelling) for the entire test and each of 11 subtests. Overall and individual subject results failed to show any systematic differences in scores over eight trials. Likewise, no significant differences were found in performance on individual syllables, nor were changes in the relative occurrence of specific syllable confusions noted. This test is highly reliable when evaluating hearing-impaired subjects, and thus is appropriate for use in investigations where identical items are administered under multiple experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document