Effects of Stimulus Repetition Rate and Frequency on the Auditory Brainstem Response in Normal, Cochlear-Impaired, and VIII Nerve/Brainstem-Impaired Subjects

1983 ◽  
Vol 26 (4) ◽  
pp. 560-567 ◽  
Author(s):  
Cynthia G. Fowler ◽  
Douglas Noffsinger

The effects of signal repetition rate and frequency on the auditory brainstem responses of normal listeners, of persons with cochlear lesions, and of persons with VIII nerve/brainstem lesions were evaluated. The normal group exhibited more waves I and II than did the cochlear and VIII/brainstem groups. The normal and cochlear groups exhibited more waves III and V than did the VIII nerve/brainstem group. The latency of wave I was not different among groups, whereas wave V was significantly later in the VIII nerve/brainstem group than in the other groups. Waves I, III, and V were later for 50/s than for 10/s. Waves I and III displayed shorter latencies for 4000 Hz than for 2000 Hz, whereas wave V displayed similar latencies for the two stimuli. In conclusion, cochlear pathology (⩽65 dB HL) does not prolong the latencies of waves I and V. A dual mechanism is discussed to explain the rate-dependent latency shift of wave V.

1987 ◽  
Vol 30 (4) ◽  
pp. 494-502 ◽  
Author(s):  
Kathleen C.M. Campbell ◽  
Paul J. Abbas

Auditory brainstem responses were recorded in two groups of adult subjects with asymmetric sensorineural hearing loss. Clicks were presented at repetition rates of 9.7, 39.7, 49.7, and 59.7/s. One group was composed of 20 patients with no known otoneurologic lesion (cochlear group), and one group was composed of 8 patients with a surgically confirmed acoustic neuroma in the ear with poorer hearing sensitivity (retrocochlear group). Detection of wave V at different repetition rates was not significantly different between the two groups. Average wave-V latency shift was not significantly different between the two groups as repetition rate increased from 9.7/s to 39.7/s but was significantly greater for the retroeochlear group as repetition rate increased from 9.7/s to 49.7/s and 59.7/s. However, the wave-V latency shift showed no improvement over the slow-rate interaural wave-V latency difference in discriminating between the two groups of patients. No significant correlation between the amount of wave-V latency shift and hearing loss at 2000 Hz or 4000 Hz was found for the ears with poorer hearing sensitivity.


2021 ◽  
Vol 28 (3) ◽  
pp. 248-254
Author(s):  
Susmi Pani ◽  
Archita Sahoo ◽  
Indranil Chatterjee ◽  
Palash Dutta

Introduction The effects of increasing stimulus repetition rate on the ABR using click stimuli have been investigated in normal and hearing impaired subjects with neurologic abnormality but there is limited study on the effect of stimulus repetition rate on ABR using chirp stimuli. The present study aims to compare the chirp evoked auditory brainstem responses with reference to changes in latency of peaks, interaural latency differences and interwave latency intervals as a function of rate and compare those responses with the  click evoked auditory brainstem responses, in normal hearing subjects. Materials and Methods Total 30 normally hearing adults were considered for this study. All participants were screened for normal hearing sensitivity upto 8 kHz in pure tone audiometry for middle ear pathology and central auditory processing disorder. Four parameters of ABR were considered to assess in this study including absolute latency, interwave latency intervals, latency-rate function and interaural latency. ABR was done based on the protocol of this study. Results Results revealed that there was a significant difference in the absolute latency and interwave intervals when the stimulus repetition rate was increased. Conclusion The latencies of wave III and V increases and waveform morphology changed as the stimulus repetition rate increased above 20/sec. The absolute latency of wave III and V was found to be shorter than clicks and can be used especially in newborn hearing evaluation assuming in shorter time window.


1996 ◽  
Vol 5 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Frank E. Musiek ◽  
Cynthia A. McCormick ◽  
Raymond M. Hurley

We performed a retrospective study of 26 patients with acoustic tumors and 26 patients with otologically diagnosed cochlear pathology to determine the sensitivity (hit rate), specificity (false-alarm rate), and efficiency of six auditory brainstem response indices. In addition, a utility value was determined for each of these six indices. The I–V interwave interval, the interaural latency difference, and the absolute latency of wave V provided the highest hit rates, the best A’ values and good utility. The V/I amplitude ratio index provided high specificity but low sensitivity scores. In regard to sensitivity and specificity, using the combination of two indices provided little overall improvement over the best one-index measures.


2019 ◽  
Vol 28 (1) ◽  
pp. 114-124
Author(s):  
Linda W. Norrix ◽  
Julie Thein ◽  
David Velenovsky

Purpose Low residual noise (RN) levels are critically important when obtaining electrophysiological recordings of threshold auditory brainstem responses. In this study, we examine the effectiveness and efficiency of Kalman-weighted averaging (KWA) implemented on the Vivosonic Integrity System and artifact rejection (AR) implemented on the Intelligent Hearing Systems SmartEP system for obtaining low RN levels. Method Sixteen adults participated. Electrophysiological measures were obtained using simultaneous recordings by the Vivosonic and Intelligent Hearing Systems for subjects in 2 relaxed conditions and 4 active motor conditions. Three averaging times were used for the relaxed states (1, 1.5, and 3 min) and for the active states (1.5, 3, and 6 min). Repeated-measures analyses of variance were used to examine RN levels as a function of noise reduction strategy (i.e., KWA, AR) and averaging time. Results Lower RN levels were obtained using KWA than AR in both the relaxed and active motor states. Thus, KWA was more effective than was AR under the conditions examined in this study. Using KWA, approximately 3 min of averaging was needed in the relaxed condition to obtain an average RN level of 0.025 μV. In contrast, in the active motor conditions, approximately 6 min of averaging was required using KWA. Mean RN levels of 0.025 μV were not attained using AR. Conclusions When patients are not physiologically quiet, low RN levels are more likely to be obtained and more efficiently obtained using KWA than AR. However, even when using KWA, in active motor states, 6 min of averaging or more may be required to obtain threshold responses. Averaging time needed and whether a low RN level can be attained will depend on the level of motor activity exhibited by the patient.


2020 ◽  
Vol 63 (11) ◽  
pp. 3877-3892
Author(s):  
Ashley Parker ◽  
Candace Slack ◽  
Erika Skoe

Purpose Miniaturization of digital technologies has created new opportunities for remote health care and neuroscientific fieldwork. The current study assesses comparisons between in-home auditory brainstem response (ABR) recordings and recordings obtained in a traditional lab setting. Method Click-evoked and speech-evoked ABRs were recorded in 12 normal-hearing, young adult participants over three test sessions in (a) a shielded sound booth within a research lab, (b) a simulated home environment, and (c) the research lab once more. The same single-family house was used for all home testing. Results Analyses of ABR latencies, a common clinical metric, showed high repeatability between the home and lab environments across both the click-evoked and speech-evoked ABRs. Like ABR latencies, response consistency and signal-to-noise ratio (SNR) were robust both in the lab and in the home and did not show significant differences between locations, although variability between the home and lab was higher than latencies, with two participants influencing this lower repeatability between locations. Response consistency and SNR also patterned together, with a trend for higher SNRs to pair with more consistent responses in both the home and lab environments. Conclusions Our findings demonstrate the feasibility of obtaining high-quality ABR recordings within a simulated home environment that closely approximate those recorded in a more traditional recording environment. This line of work may open doors to greater accessibility to underserved clinical and research populations.


2021 ◽  
Vol 11 (1) ◽  
pp. 38-46
Author(s):  
Fan-Yin Cheng ◽  
Craig A. Champlin

Temporal acuity is the ability to differentiate between sounds based on fluctuations in the waveform envelope. The proximity of successive sounds and background noise diminishes the ability to track rapid changes between consecutive sounds. We determined whether a physiological correlate of temporal acuity is also affected by these factors. We recorded the auditory brainstem response (ABR) from human listeners using a harmonic complex (S1) followed by a brief tone burst (S2) with the latter serving as the evoking signal. The duration and depth of the silent gap between S1 and S2 were manipulated, and the peak latency and amplitude of wave V were measured. The latency of the responses decreased significantly as the duration or depth of the gap increased. The amplitude of the responses was not affected by the duration or depth of the gap. These findings suggest that changing the physical parameters of the gap affects the auditory system’s ability to encode successive sounds.


2019 ◽  
Vol 2 (1) ◽  
pp. 17-21
Author(s):  
Adil Munir ◽  
Nazia Mumtaz ◽  
Ghulam Saqulain ◽  
Munir Ahmad

Objective: Hearing loss (HL) with a local prevalence of 5.7%, is the commonest childhood disability, requiring Early Hearing Detection and Intervention (EHDI) programs to reduce the disability burden. Knowing the degree, type and configuration of HL is prerequisite for appropriate amplification, with Automated Auditory Brainstem Responses (ABR) being commonly used for this purpose, however Auditory Steady State Response (ASSR) has been recently introduced in the region. This study was conducted to compare ABR to ASSR, as an early diagnostic tool in children under five years of age. Methodology: This cross-sectional comparative study was performed at the Auditory Verbal Institute of Audiology and Speech (AVIAS) clinics in Rawalpindi and Islamabad, from December 2016 to September 2017. It included thirty-two cases (n=32) who visited AVIAS clinics for hearing assessment and conformed to the investigative protocol using non probability convenient sampling technique, and subjected to both ABR and ASSR for comparative purposes. Correlations were calculated between the thresholds obtained by ABR and ASSR. Results: N=32 children (64 ears) with male female ratio of 2.2:1 and mean age of 33.50±17.73 months were tested with ABR and ASSR for hearing thresholds and correlation coefficient between 2KHz, 4KHz ASSR and average of both with ABR was calculated to be 0.92 and 0.90 and 0.94 respectively. Conclusion: ASSR provides additional frequency specific hearing threshold estimation compared to C-ABR, essentially required for proper setting of amplification devices. 


PEDIATRICS ◽  
1989 ◽  
Vol 83 (3) ◽  
pp. 385-392
Author(s):  
Steven J. Kramer ◽  
Dianne R. Vertes ◽  
Marie Condon

Auditory brainstem response (ABR) evaluations were performed on 667 high-risk infants from an infant special care unit. Of these infants, 82% passed the ABR. Those infants who failed the ABR were classified into two groups, those who failed at 30 dB hearing level and those who failed at 45 dB hearing level. All of the infants were encouraged to return for otologic/audiologic follow-up in 1, 3, or 6 months, depending on the initial ABR results. All of the infants with severe hearing impairments came from the group who failed at 45 dB hearing level. The incidence of severe sensorineural hearing impairment in this population was estimated to be 2.4%. For the group that failed at 30 dB hearing level, 80% of those who were abnormal at follow-up were considered to have conductive hearing disorders and 20% had mild sensorineural hearing impairments. In addition, infants enrolled in a parent-infant program for hearing impaired by 6 months of age were from the ABR program; however, several infants entered the parent-infant program at a relatively late age because they did not meet the high-risk criteria, they were from other hospitals, or they were not detected by the ABR program.


Sign in / Sign up

Export Citation Format

Share Document