Blue Dye in the Evaluation of Dysphagia

2002 ◽  
Vol 11 (4) ◽  
pp. 4-6
Author(s):  
Nancy B. Swigert
Keyword(s):  
2004 ◽  
Vol 43 (01) ◽  
pp. 10-15 ◽  
Author(s):  
R. A. Schmid ◽  
C. Kunte ◽  
B. Konz ◽  
K. Hahn ◽  
M. Weiss

Summary Aim of this study was to localize the sentinel lymph node by lymphoscintigraphy using technetium-99m colloidal rhenium sulphide (Nanocis®), a new commercially available radiopharmaceutical. Due to the manufacturers’ instructions it is licensed for lymphoscintigraphy. Patients, methods: 35 consecutive patients with histologically proved malignant melanoma, but without clinical evidence of metastases, were preoperatively examined by injecting 20-40 MBq Nanocis® with (mean particle size: 100 nm; range: 50-200 nm) intradermally around the lesion. Additionally blue dye was injected intaoperatively. A hand-held gamma probe guided sentinel node biopsy. Results: During surgery, the preoperatively scintigraphically detected sentinel lymph nodes were identified in 34/35 (97%) patients. The number of sentinel nodes per patient ranged from one to four (mean: n = 1.8). Histologically, metastatic involvement of the sentinel lymph node was found in 12/35 (34%) patients; the sentinel lymph node positive-rate (14/63 SLN) was 22%. Thus, it is comparable to the findings of SLN-mapping using other technetium-99m-labeled nanocolloides. Conclusion: 99mTc-bound colloidal rhenium sulphide is also suitable for sentinel node mapping.


Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2018 ◽  
Vol 8 (3) ◽  
pp. 502-513
Author(s):  
Saravanan Narayanan ◽  
Rathika Govindasamy

2019 ◽  
Author(s):  
Chem Int

The study aims to use an adsorbent natural based of Moroccan oil shale of Timahdit area (Y layer) in a physical-chemical adsorption process for treating industrial discharges colorful. The used adsorbent is the insoluble party of the sub-critical extraction of decarbonized oil shale of Timahdit. The tests performed on the methylene blue (MB), showed a strong elimination in the first 10 minutes. The influences of various experimental parameters were studied: mass ratio of adsorbent, time and temperature of thermal treatment, contact time, pH of MB and heating temperature of solution on the parameters of material were studied. The experimental results have shown that the adsorption of methylene blue dye by the adsorbent is more than 90% at initial pH a range 6-7 at room temperature for 30 minutes. The process is simple and the adsorbent produced is a new material with interesting adsorption capacities of moderate cost which does not require an activating agent and can be used as industrial adsorbent for the decontamination of effluents containing organic pollutants.


2001 ◽  
Vol 90 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Leonardo C. Clavijo ◽  
Mary B. Carter ◽  
Paul J. Matheson ◽  
Mark A. Wilson ◽  
William B. Wead ◽  
...  

In vivo pulmonary arterial catheterization was used to determine the mechanism by which platelet-activating factor (PAF) produces pulmonary edema in rats. PAF induces pulmonary edema by increasing pulmonary microvascular permeability (PMP) without changing the pulmonary pressure gradient. Rats were cannulated for measurement of pulmonary arterial pressure (Ppa) and mean arterial pressure. PMP was determined by using either in vivo fluorescent videomicroscopy or the ex vivo Evans blue dye technique. WEB 2086 was administered intravenously (IV) to antagonize specific PAF effects. Three experiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAF induced systemic hypotension with a decrease in Ppa. PMP increased after IV PAF in a dose-related manner. Topical PAF increased PMP but decreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa (50 ± 3%) increased during E. coli bacteremia. PAF-receptor blockade prevents changes in Ppa and PMP after both topical PAF and E. coli bacteremia. PAF, which has been shown to mediate pulmonary edema in prior studies, appears to act in the lung by primarily increasing microvascular permeability. The presence of PAF might be prerequisite for pulmonary vascular constriction during gram-negative bacteremia.


2019 ◽  
Vol 217 ◽  
pp. 6-14 ◽  
Author(s):  
Juliana M.N. dos Santos ◽  
Carolina R. Pereira ◽  
Luiz Antonio A. Pinto ◽  
Tuanny Frantz ◽  
Éder C. Lima ◽  
...  
Keyword(s):  
Blue Dye ◽  

Sign in / Sign up

Export Citation Format

Share Document