Stratigraphic evidence for a Late Devonian possible back-bulge basin in the Appalachian basin, United States

2003 ◽  
Vol 15 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Jonathan K. Filer
2011 ◽  
Vol 3 (10) ◽  
pp. 1986-2008 ◽  
Author(s):  
Bryan Sell ◽  
David Murphy ◽  
Charles A.S. Hall

2018 ◽  
Vol 156 (5) ◽  
pp. 801-810 ◽  
Author(s):  
JEFFREY R. THOMPSON ◽  
TIMOTHY A. M. EWIN

AbstractMany of the most diverse clades of Late Palaeozoic echinoids (sea urchins) originated in the Devonian period. Our understanding of diversity dynamics of these Late Palaeozoic clades are thus informed by new systematic descriptions of some of their earliest members. The Proterocidaridae are a diverse and morphologically distinct clade of stem group echinoids with flattened tests and enlarged adoral pore pairs, which are first known from the Upper Devonian. We herein report on a new species of Hyattechinus, Hyattechinus anglicus n. sp., from the Upper Devonian of the North Devon Basin, Devon, UK. This is the first Devonian Hyattechinus known from outside of the Appalachian Basin, USA, and provides novel information regarding the palaeogeographic and stratigraphic distribution of proterocidarids in Late Devonian times. We additionally update the stratigraphic distribution of Devonian Hyattechinus from the Appalachian Basin, following recent biostratigraphic resolution of their occurrences. Hyattechinus appears to have been present in the Rheic echinoderm fauna during Late Devonian times, and comparison of the palaeoenvironmental setting of Hyattechinus anglicus with that of other Hyattechinus from the Famennian of the Appalachian Basin suggests that the genus may have preferred siliciclastic settings. Furthermore, this new taxon increases the diversity of echinoids from the Upper Devonian of Devon to three species.


2008 ◽  
Vol 268 (3-4) ◽  
pp. 143-151 ◽  
Author(s):  
David K. Brezinski ◽  
C. Blaine Cecil ◽  
Viktoras W. Skema ◽  
Robert Stamm

1987 ◽  
Vol 61 (4) ◽  
pp. 750-757 ◽  
Author(s):  
George C. Mcintosh

Two recently collected specimens of Bogotacrinus scheibei Schmidt, 1937, from the Devonian (Emsian–Eifelian) Floresta Formation of Colombia reveal that Bogotacrinus is a dicyclic camerate crinoid genus closely related to Pterinocrinus Goldring, 1923 (Lower–Upper Devonian of eastern North America and western Europe), and Ampurocrinus McIntosh, 1981 (Lower Devonian of Bolivia). The new diplobathrid camerate crinoid family Pterinocrinidae, characterized by species with low conical dicyclic cups and rami composed of compound, bipinnulate brachials, is herein proposed to accommodate these three genera. This family originated in western Europe and migrated into the Malvinokaffric and southern Eastern Americas Realms during the Early Devonian and into the northeastern Appalachian Basin by the Late Devonian.


Author(s):  
Martin P. Derby ◽  
Bailey Theriault

Abstract Geohazards have the potential to adversely affect the operation or integrity of an existing pipeline, or the routing, design, and construction of a proposed pipeline. Identifying, characterizing, evaluating, and if necessary, mitigating and monitoring geologic hazards have become critical steps to successfully and safely building and operating pipelines in the Appalachian Basin region of the United States. The recent, rapid expansion of pipeline construction and operation in the region, along with natural geologic and geographic conditions which are conducive to landsliding and ground subsidence, have resulted in a recent increase in geohazard-related incidences both during and post-construction of pipelines. As such, there is an increasing need to recognize, understand, and closely manage geohazards in this region, prior to, during, and post-construction of pipelines. This paper will provide an overview of essential tools that have proven most useful in this region, to identify, characterize, and ultimately mitigate and monitor potential geohazards. This paper will also provide insight on how to evaluate specific project needs and best-fit approaches and solutions for the project at hand, to reduce the operator’s risk. A case study will be presented from the Appalachian Basin region, including how a phased approach was used to assess and manage geohazards. The phased approach includes (1) Phase I Assessments, which consist of a regional-scale desktop assessment to identify, initially characterize, and qualitatively classify (e.g., low, moderate, high hazards) geohazards; (2) Phase II Assessments, which consist of a non-intrusive ground reconnaissance completed at targeted sites; and (3) Phase III Assessments, which consist of subsurface investigations such as drilling, test pitting, or geophysical surveys to further characterize specific hazards. The information obtained from the phased approach can be used for the design of mitigation and/or monitoring, if deemed necessary. Overall approaches to selecting and utilizing best-fit mitigation and monitoring options, both during and post-construction, fit for the regional conditions and to the individual project, will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document