scholarly journals Myeloid differentiation of human cord blood CD34+ cells during ex vivo expansion using thrombopoietin, flt3-ligand and/or granulocyte-colony stimulating factor

1999 ◽  
Vol 105 (4) ◽  
pp. 1034-1040 ◽  
Author(s):  
Eun-Seon Yoo ◽  
Kyung-Ha Ryu ◽  
Hae-Young Park ◽  
Chu-Myung Seong ◽  
Wha-Soon Chung ◽  
...  
2001 ◽  
Vol 16 (1) ◽  
pp. 20 ◽  
Author(s):  
Ju Young Seoh ◽  
Hae Young Park ◽  
Wha Soon Chung ◽  
Seung Cheol Kim ◽  
Myong Joon Hahn ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1329-1329
Author(s):  
Aleksandra Rizo ◽  
Edo Vellenga ◽  
Gerald de Haan ◽  
Jan Jacob Schuringa

Abstract Hematopoietic stem cells (HSCs) are able to self-renew and differentiate into cells of all hematopoietic lineages. Because of this unique property, they are used for HSC transplantations and could serve as a potential source of cells for future gene therapy. However, the difficulty to expand or even maintain HSCs ex vivo has been a major limitation for their clinical applications. Here, we report that overexpression of the Polycomb group gene Bmi-1 in human cord blood-derived HSCs can potentially overcome this limitation as stem/progenitor cells could be maintained in liquid culture conditions for over 16 weeks. In mouse studies, it has been reported that increased expression of Bmi-1 promotes HSC self-renewal, while loss-of-function analysis revealed that Bmi-1 is implicated in maintenance of the hematopoietic stem cells (HSC). In a clinically more relevant model, using human cord blood CD34+ cells, we have established a long-term ex-vivo expansion method by stable overexpression of the Bmi-1 gene. Bmi-1-transduced cells proliferated in liquid cultures supplemented with 20% serum, SCF, TPO, Flt3 ligand, IL3 and IL6 for more than 4 months, with a cumulative cell expansion of more then 2×105-fold. The cells remained cytokine-dependent, while about 4% continued to express CD34 for over 20 weeks of culture. The cultured cells retained their progenitor activity throughout the long-term expansion protocol. The colony-forming units (CFUs) were present at a frequency of ~ 30 colonies per 10 000 cells 16 weeks after culture and consisted of CFU-GM, BFU-E and high numbers of CFU-GEMM type progenitors. After plating the transduced cells in co-cultures with the stromal cell line MS5, Bmi-1 cells showed a proliferative advantage as compared to control cells, with a cumulative cell expansion of 44,9 fold. The non-adherent cells from the co-cultures gave rise to higher numbers of colonies of all types (~70 colonies/10.000 cells) after 4 weeks of co-culture. The LTC-IC frequencies were 5-fold higher in the Bmi-1-transduced cells compared to control cells (1/361 v.s. 1/2077, respectively). Further studies will be focused on in-vivo transplantation of the long-term cultured cells in NOD/SCID mice to test their repopulating capacity. In conclusion, our data implicate Bmi-1 as an important modulator of human HSC self-renewal and suggest that it can be a potential target for therapeutic manipulation of human HSCs.


2001 ◽  
Vol 113 (2) ◽  
pp. 470-478 ◽  
Author(s):  
Kyung-Ha Ryu ◽  
Susan Chun ◽  
Steve Carbonierre ◽  
Seock-Ah Im ◽  
Hyung-Lae Kim ◽  
...  

Stem Cells ◽  
2002 ◽  
Vol 20 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Jeong-Hae Kie ◽  
Woo-Ick Yang ◽  
Mi-Kyung Lee ◽  
Tae-Jung Kwon ◽  
Yoo-Hong Min ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 5044-5051 ◽  
Author(s):  
Isabelle I. Salles ◽  
Tim Thijs ◽  
Christine Brunaud ◽  
Simon F. De Meyer ◽  
Johan Thys ◽  
...  

Abstract Xenotransplantation systems have been used with increasing success to better understand human hematopoiesis and thrombopoiesis. In this study, we demonstrate that production of human platelets in nonobese diabetic/severe combined immunodeficient mice after transplantation of unexpanded cord-blood CD34+ cells was detected within 10 days after transplantation, with the number of circulating human platelets peaking at 2 weeks (up to 87 × 103/μL). This rapid human platelet production was followed by a second wave of platelet formation 5 weeks after transplantation, with a population of 5% still detected after 8 weeks, attesting for long-term engraftment. Platelets issued from human hematopoietic stem cell progenitors are functional, as assessed by increased CD62P expression and PAC1 binding in response to collagen-related peptide and thrombin receptor-activating peptide activation and their ability to incorporate into thrombi formed on a collagen-coated surface in an ex vivo flow model of thrombosis. This interaction was abrogated by addition of inhibitory monoclonal antibodies against human glycoprotein Ibα (GPIbα) and GPIIb/IIIa. Thus, our mouse model with production of human platelets may be further explored to study the function of genetically modified platelets, but also to investigate the effect of stimulators or inhibitors of human thrombopoiesis in vivo.


Sign in / Sign up

Export Citation Format

Share Document