scholarly journals Wave-theoretical inversion of teleseismic surface waves in a regional network: phase-velocity maps and a three-dimensional upper-mantle shear-wave-velocity model for southern Germany

2002 ◽  
Vol 132 (1) ◽  
pp. 203-225 ◽  
Author(s):  
Wolfgang Friederich
2012 ◽  
Vol 191 (1) ◽  
pp. 282-304 ◽  
Author(s):  
C. P. Legendre ◽  
T. Meier ◽  
S. Lebedev ◽  
W. Friederich ◽  
L. Viereck-Götte

2019 ◽  
Vol 220 (3) ◽  
pp. 1555-1568 ◽  
Author(s):  
R Movaghari ◽  
G Javan Doloei

SUMMARY More accurate crustal structure models will help us to better understand the tectonic convergence between Arabian and Eurasian plates in the Iran plateau. In this study, the crustal and uppermost mantle velocity structure of the Iran plateau is investigated using ambient noise tomography. Three years of continuous data are correlated to retrieve Rayleigh wave empirical Green's functions, and phase velocity dispersion curves are extracted using the spectral method. High-resolution Rayleigh wave phase velocity maps are presented at periods of 8–60 s. The tomographic maps show a clear consistency with geological structures such as sedimentary basins and seismotectonic zones, especially at short periods. A quasi-3-D shear wave velocity model is determined from the surface down to 100 km beneath the Iran plateau. A transect of the shear wave velocity model has been considered along with a profile extending across the southern Zagros, the Sanandaj-Sirjan Zone (SSZ), the Urumieh-Dokhtar Magmatic Arc (UDMA) and Central Iran and Kopeh-Dagh (KD). Obvious crustal thinning and thickening are observable along the transect of the shear wave velocity model beneath Central Iran and the SSZ, respectively. The observed shear wave velocities beneath the Iran plateau, specifically Central Iran, support the slab break-off idea in which low density asthenospheric materials drive towards the upper layers, replacing materials in the subcrustal lithosphere.


2021 ◽  
Author(s):  
Cheng-Nan Liu ◽  
Fan-Chi Lin ◽  
Hsin-Hua Huang ◽  
Yu Wang ◽  
Elizabeth M. Berg ◽  
...  

<p>Taiwan located at the convergence margin of the Eurasian Plate (EP) and Philippine Sea Plate (PSP) is one of the most active orogenic belts around the world. Under vigorously tectonic activities, the northern Taiwan is composed of complicated geological features including rifting basins, fold-and-thrust systems, volcanoes, and hydrothermal activity. In this study, we apply the technique of Ambient Noise Tomography (ANT) to eight months of continuous waveforms from the Formosa Array and Broadband Array for Seismology in Taiwan (BATS), with 137 broadband stations and ~5km station spacing. We first calculate multi-components cross-correlation functions to extract the information of Rayleigh wave signals. We then invoke Eikonal tomography to calculate the phase velocity map through 3 to 10 second periods and estimate Rayleigh wave ellipticity at each station between 2 to 13 second periods. For each grid point, we jointly invert the two types of Rayleigh wave measurements through a Bayesian-based inversion method to obtain the local 1-D shear wave velocity model. All 1-D models are then combined to construct a comprehensive 3-D model. Our 3-D model reveals upper crustal structures that well correlate with surface geological features. Near the surface, the model delineates the low-velocity Taipei and Ilan basins from the adjacent fast-velocity mountainous areas, with basin geometries consistent with the results of previous geophysical exploration and geological studies. At greater depths, low velocity anomalies are observed associated with the Linkou tableland, Tatun volcano group, and a possible dyke intrusion beneath the southern Ilan basin. The model also provides new geometrical constraints on the major active fault systems in the area, which are important to understand the basin formation and orogeny dynamics. The new 3-D shear wave velocity model allows a comprehensive investigation of shallow geologic structures in northern Taiwan.</p>


Sign in / Sign up

Export Citation Format

Share Document