'What's larvae got to do with it?' Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential

2004 ◽  
Vol 13 (3) ◽  
pp. 597-611 ◽  
Author(s):  
P. B. Marko
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Natacha Nikolic ◽  
Iratxe Montes ◽  
Maxime Lalire ◽  
Alexis Puech ◽  
Nathalie Bodin ◽  
...  

Abstract Albacore tuna (Thunnus alalunga) is an important target of tuna fisheries in the Atlantic and Indian Oceans. The commercial catch of albacore is the highest globally among all temperate tuna species, contributing around 6% in weight to global tuna catches over the last decade. The accurate assessment and management of this heavily exploited resource requires a robust understanding of the species’ biology and of the pattern of connectivity among oceanic regions, yet Indian Ocean albacore population dynamics remain poorly understood and its level of connectivity with the Atlantic Ocean population is uncertain. We analysed morphometrics and genetics of albacore (n = 1,874) in the southwest Indian (SWIO) and southeast Atlantic (SEAO) Oceans to investigate the connectivity and population structure. Furthermore, we examined the species’ dispersal potential by modelling particle drift through major oceanographic features. Males appear larger than females, except in South African waters, yet the length–weight relationship only showed significant male–female difference in one region (east of Madagascar and Reunion waters). The present study produced a genetic differentiation between the southeast Atlantic and southwest Indian Oceans, supporting their demographic independence. The particle drift models suggested dispersal potential of early life stages from SWIO to SEAO and adult or sub-adult migration from SEAO to SWIO.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4295 ◽  
Author(s):  
José F. Domínguez-Contreras ◽  
Adrian Munguia-Vega ◽  
Bertha P. Ceballos-Vázquez ◽  
Marcial Arellano-Martínez ◽  
Francisco J. García-Rodríguez ◽  
...  

The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.


2021 ◽  
Author(s):  
◽  
Alexander Verry

<p>A fundamental goal of fisheries management is sustainable harvesting and the preservation of properly functioning populations. Therefore, an important aspect of management is the identification of demographically independent populations (stocks), which is achieved by estimating the movement of individuals between areas. A range of methods have been developed to determine the level of connectivity among populations; some measure this directly (e.g. mark-recapture) while others use indirect measures (e.g. population genetics). Each species presents a different set of challenges for methods that estimate levels of connectivity. Metanephrops challengeri is a species of nephropid lobster that supports a commercial fishery and inhabits the continental shelf and slope of New Zealand. Very little research on population structure has been reported for this species and it presents a unique set of challenges compared to finfish species. M. challengeri have a short pelagic larval duration lasting up to five days which limits the dispersal potential of larvae, potentially leading to low levels of connectivity among populations. The aim of this study was to examine the genetic population structure of the New Zealand M. challengeri fishery.  DNA was extracted from M. challengeri samples collected from the eastern coast of the North Island (from the Bay of Plenty to the Wairarapa), the Chatham Rise, and near the Auckland Islands. DNA from the mitochondrial CO1 gene and nuclear ITS-1 region was amplified and sequenced. The aligned dataset of DNA sequences was then used to estimate levels of both genetic diversity and differentiation, and examine demographic history. Analyses of population structure indicate that M. challengeri from the Auckland Islands region are genetically distinct from M. challengeri inhabiting the Chatham Rise, and those collected from waters off the eastern coast of the North Island. There appears to be gene flow among the sampling sites off the eastern coast of the North Island and on the Chatham Rise, but some isolation by distance was detected. These results indicate that some of these populations may be demographically uncoupled. Genetic diversity estimates combined with Bayesian skyline plots and demographic history parameters suggest that M. challengeri populations have recently undergone a size expansion.  The genetic structuring between the Auckland Islands site and all others may be due to a putative habitat disjunction off the Otago shelf. In contrast, a largely continuously distributed population along the eastern coast of the North Island and the Chatham Rise most likely promotes gene flow as larvae can be transported limited distances by oceanic currents. Historical changes in climate may have influenced the patterns of present-day structure and genetic diversity of M. challengeri, by altering habitat availability and other characteristics of their environment. This study provides evidence that species which appear to have limited dispersal potential can still maintain connected populations, but there are situations where large breaks in suitable habitat appear to limit gene flow. The results of this study will help inform stock structure of the M. challengeri fishery, which will enable stock assessments to be more precisely aligned to natural population boundaries.</p>


2021 ◽  
Author(s):  
◽  
Alexander Verry

<p>A fundamental goal of fisheries management is sustainable harvesting and the preservation of properly functioning populations. Therefore, an important aspect of management is the identification of demographically independent populations (stocks), which is achieved by estimating the movement of individuals between areas. A range of methods have been developed to determine the level of connectivity among populations; some measure this directly (e.g. mark-recapture) while others use indirect measures (e.g. population genetics). Each species presents a different set of challenges for methods that estimate levels of connectivity. Metanephrops challengeri is a species of nephropid lobster that supports a commercial fishery and inhabits the continental shelf and slope of New Zealand. Very little research on population structure has been reported for this species and it presents a unique set of challenges compared to finfish species. M. challengeri have a short pelagic larval duration lasting up to five days which limits the dispersal potential of larvae, potentially leading to low levels of connectivity among populations. The aim of this study was to examine the genetic population structure of the New Zealand M. challengeri fishery.  DNA was extracted from M. challengeri samples collected from the eastern coast of the North Island (from the Bay of Plenty to the Wairarapa), the Chatham Rise, and near the Auckland Islands. DNA from the mitochondrial CO1 gene and nuclear ITS-1 region was amplified and sequenced. The aligned dataset of DNA sequences was then used to estimate levels of both genetic diversity and differentiation, and examine demographic history. Analyses of population structure indicate that M. challengeri from the Auckland Islands region are genetically distinct from M. challengeri inhabiting the Chatham Rise, and those collected from waters off the eastern coast of the North Island. There appears to be gene flow among the sampling sites off the eastern coast of the North Island and on the Chatham Rise, but some isolation by distance was detected. These results indicate that some of these populations may be demographically uncoupled. Genetic diversity estimates combined with Bayesian skyline plots and demographic history parameters suggest that M. challengeri populations have recently undergone a size expansion.  The genetic structuring between the Auckland Islands site and all others may be due to a putative habitat disjunction off the Otago shelf. In contrast, a largely continuously distributed population along the eastern coast of the North Island and the Chatham Rise most likely promotes gene flow as larvae can be transported limited distances by oceanic currents. Historical changes in climate may have influenced the patterns of present-day structure and genetic diversity of M. challengeri, by altering habitat availability and other characteristics of their environment. This study provides evidence that species which appear to have limited dispersal potential can still maintain connected populations, but there are situations where large breaks in suitable habitat appear to limit gene flow. The results of this study will help inform stock structure of the M. challengeri fishery, which will enable stock assessments to be more precisely aligned to natural population boundaries.</p>


Sign in / Sign up

Export Citation Format

Share Document