Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes

2008 ◽  
Vol 42 (1) ◽  
pp. 37-46 ◽  
Author(s):  
John T. Loh ◽  
Joyce P.-Y. Yuen-Tsai ◽  
Minviluz G. Stacey ◽  
Dasharath Lohar ◽  
April Welborn ◽  
...  
2004 ◽  
Vol 55 (3) ◽  
pp. 664-674 ◽  
Author(s):  
Matthew R. Johnson ◽  
Clemente I. Montero ◽  
Shannon B. Conners ◽  
Keith R. Shockley ◽  
Stephanie L. Bridger ◽  
...  

2008 ◽  
Vol 74 (12) ◽  
pp. 3749-3756 ◽  
Author(s):  
Siriluck Jitacksorn ◽  
Michael J. Sadowsky

ABSTRACT The nodulation of Glycine max cv. Lambert and the nodulation-restricting plant introduction (PI) genotype PI 417566 by wild-type Bradyrhizobium japonicum USDA110 is regulated in a population-density-dependent manner. Nodulation on both plant genotypes was suppressed (inhibited) when plants received a high-density inoculum (109 cells/ml) of strain USDA110 grown in complex medium, and more nodules were produced on plants receiving a low-cell-density inoculum (105 cells/ml). Since cell-free supernatants from strain USDA110 grown to high cell density in complex medium decreased the expression of an nodY-lacZ fusion, this phenomenon was attributed to bradyoxetin-induced repression of nod gene expression. Inoculation of either the permissive soybean genotype (cv. Lambert) or PI 417566 with 109 cells/ml of the nodD2, nolA, nodW, and nwsB mutants of USDA110 enhanced nodulation (up to 24%) relative to that seen with inoculations done with 105 cells/ml of the mutants or the wild-type strain, indicating that these genes are involved in population-density-dependent nodulation of soybeans. In contrast, the number of nodules produced by an nodD1 mutant on either soybean genotype was less than those seen with the wild-type strain inoculated at a low inoculum density. The nodD2 mutant outcompeted B. japonicum strain USDA123 for nodulation of G. max cv. Lambert at a high or low inoculum density, and the results of root-tip-marking and time-to-nodulate studies indicated that the nolA and nodD2 mutants nodulated this soybean genotype faster than wild-type USDA110. Taken together, the results from these studies indicate that the nodD2 mutant of B. japonicum may be useful to enhance soybean nodulation at high inoculum densities and that NodD2 is a key repressor influencing host-controlled restriction of nodulation, density-dependent suppression of nodulation, perception of bradyoxetin, and competitiveness in the soybean-B. japonicum symbiosis.


2002 ◽  
Vol 184 (6) ◽  
pp. 1759-1766 ◽  
Author(s):  
John Loh ◽  
Dasharath P. Lohar ◽  
Brett Andersen ◽  
Gary Stacey

ABSTRACT Bradyrhizobium japonicum nod gene expression was previously shown to be population density dependent. Induction of the nod genes is highest at low culture density and repressed at high population densities. This repression involves both NolA and NodD2 and is mediated by an extracellular factor found in B. japonicum conditioned medium. NolA and NodD2 expression is maximal at high population densities. We demonstrate here that a response regulator, encoded by nwsB, is required for the full expression of the B. japonicum nodYABC operon. In addition, NwsB is also required for the population-density-dependent expression of both nolA and nodD2. Expression of nolA and nodD2 in the nwsB mutant remained at a basal level, even at high culture densities. The nwsB defect could be complemented by overexpression of a second response regulator, NodW. Consistent with the fact that NolA and NodD2 repress nod gene expression, the expression of a nodY-lacZ fusion in the nwsB mutant was unaffected by culture density. In plant assays with GUS fusions, nodules infected with the wild type showed no nodY-GUS expression. In contrast, nodY-GUS expression was not repressed in nodules infected with the nwsB mutant. Nodule competition assays between the wild type and the nwsB mutant revealed that the addition of conditioned medium resulted in a competitive advantage for the nwsB mutant.


Author(s):  
Michael J. Fogarty ◽  
Jeremy S. Collie

The observation that no population can grow indefinitely and that most populations persist on ecological timescales implies that mechanisms of population regulation exist. Feedback mechanisms include competition for limited resources, cannibalism, and predation rates that vary with density. Density dependence occurs when per capita birth or death rates depend on population density. Density dependence is compensatory when the population growth rate decreases with population density and depensatory when it increases. The logistic model incorporates density dependence as a simple linear function. A population exhibiting logistic growth will reach a stable population size. Non-linear density-dependent terms can give rise to multiple equilibria. With discrete time models or time delays in density-dependent regulation, the approach to equilibrium may not be smooth—complex dynamical behavior is possible. Density-dependent feedback processes can compensate, up to a point, for natural and anthropogenic disturbances; beyond this point a population will collapse.


2019 ◽  
Vol 95 (2) ◽  
pp. 673-678 ◽  
Author(s):  
Milan Vrtílek ◽  
Jakub Žák ◽  
Matej Polačik ◽  
Radim Blažek ◽  
Martin Reichard

Sign in / Sign up

Export Citation Format

Share Document