Expression and kinetics of the mitochondrial alternative oxidase in nitrogen-fixing nodules of soybean roots

1997 ◽  
Vol 20 (10) ◽  
pp. 1273-1282 ◽  
Author(s):  
A. H. MILLAR ◽  
P. M. FINNEGAN ◽  
J. WHELAN ◽  
J. J. DREVON ◽  
D. A. DAY
2012 ◽  
Vol 40 (3) ◽  
pp. 2127-2138 ◽  
Author(s):  
Patrik Mészáros ◽  
Ľubomír Rybanský ◽  
Pavol Hauptvogel ◽  
Roman Kuna ◽  
Jana Libantová ◽  
...  
Keyword(s):  

2018 ◽  
Vol 84 (9) ◽  
Author(s):  
Cécile Revellin ◽  
Alain Hartmann ◽  
Sébastien Solanas ◽  
Edward Topp

ABSTRACTAntibiotics are entrained in agricultural soil through the application of manures from medicated animals. In the present study, a series of small field plots was established in 1999 that receive annual spring applications of a mixture of tylosin, sulfamethazine, and chlortetracycline at concentrations ranging from 0.1 to 10 mg · kg−1soil. These antibiotics are commonly used in commercial swine production. The field plots were cropped continuously for soybeans, and in 2012, after 14 annual antibiotic applications, the nodules from soybean roots were sampled and the occupying bradyrhizobia were characterized. Nodules and isolates were serotyped, and isolates were distinguished using 16S rRNA gene and 16S to 23S rRNA gene intergenic spacer region sequencing, multilocus sequence typing, and RSα fingerprinting. Treatment with the antibiotic mixture skewed the population of bradyrhizobia dominating the nodule occupancy, with a significantly larger proportion ofBradyrhizobium liaoningenseorganisms even at the lowest dose of 0.1 mg · kg−1soil. Likewise, all doses of antibiotics altered the distribution of RSα fingerprint types. Bradyrhizobia were phenotypically evaluated for their sensitivity to the antibiotics, and there was no association betweenin situtreatment and a decreased sensitivity to the drugs. Overall, long-term exposure to the antibiotic mixture altered the composition of bradyrhizobial populations occupying nitrogen-fixing nodules, apparently through an indirect effect not associated with the sensitivity to the drugs. Further work evaluating agronomic impacts is warranted.IMPORTANCEAntibiotics are entrained in agricultural soil through the application of animal or human waste or by irrigation with reused wastewater. Soybeans obtain nitrogen through symbiotic nitrogen fixation. Here, we evaluated the impact of 14 annual exposures to antibiotics commonly used in swine production on the distribution of bradyrhizobia occupying nitrogen-fixing nodules on soybean roots in a long-term field experiment. By means of various sequencing and genomic fingerprinting techniques, the repeated exposure to a mixture of tylosin, sulfamethazine, and chlortetracycline each at a nominal soil concentration of 0.1 mg · kg−1soil was found to modify the diversity and identity of bradyrhizobia occupying the nodules. Nodule occupancy was not associated with the level of sensitivity to the antibiotics, indicating that the observed effects were not due to the direct toxicity of the antibiotics on bradyrhizobia. Altogether, these results indicate the potential for long-term impacts of antibiotics on this agronomically important symbiosis.


1998 ◽  
Vol 117 (2) ◽  
pp. 695-701 ◽  
Author(s):  
Mirna Hilal ◽  
Ana M. Zenoff ◽  
Graciela Ponessa ◽  
Hortensia Moreno ◽  
Eddy M. Massa

2013 ◽  
Vol 79 (7) ◽  
pp. 2459-2462 ◽  
Author(s):  
Eric Giraud ◽  
Lei Xu ◽  
Clémence Chaintreuil ◽  
Daniel Gargani ◽  
Djamel Gully ◽  
...  

ABSTRACTThe ability of photosyntheticBradyrhizobiumstrains ORS285 and ORS278 to nodulate soybeans was investigated. While thenodgene-deficient ORS278 strain induced bumps only on soybean roots, thenodgene-containing ORS285 strain formed nitrogen-fixing nodules. However, symbiotic efficiencies differed drastically depending on both the soybean genotype used and the culture conditions tested.


Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 2045-2052 ◽  
Author(s):  
Elina Balodite ◽  
Inese Strazdina ◽  
Nina Galinina ◽  
Samantha McLean ◽  
Reinis Rutkis ◽  
...  

The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc 1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc 1 complex via cytochrome c 552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc 1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc 1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Xu ◽  
Alice C. Copsey ◽  
Luke Young ◽  
Mario R. O. Barsottini ◽  
Mary S. Albury ◽  
...  

The alternative oxidase (AOX) is widespread in plants, fungi, and some protozoa. While the general structure of the AOX remains consistent, its overall activity, sources of kinetic activation and their sensitivity to inhibitors varies between species. In this study, the recombinant Trypanosoma brucei AOX (rTAO) and Arabidopsis thaliana AOX1A (rAtAOX1A) were expressed in the Escherichia coli ΔhemA mutant FN102, and the kinetic parameters of purified AOXs were compared. Results showed that rTAO possessed the highest Vmax and Km for quinol-1, while much lower Vmax and Km were observed in the rAtAOX1A. The catalytic efficiency (kcat/Km) of rTAO was higher than that of rAtAOX1A. The rTAO also displayed a higher oxygen affinity compared to rAtAOX1A. It should be noted that rAtAOX1a was sensitive to α-keto acids while rTAO was not. Nevertheless, only pyruvate and glyoxylate can fully activate Arabidopsis AOX. In addition, rTAO and rAtAOX1A showed different sensitivity to AOX inhibitors, with ascofuranone (AF) being the best inhibitor against rTAO, while colletochlorin B (CB) appeared to be the most effective inhibitor against rAtAOX1A. Octylgallate (OG) and salicylhydroxamic acid (SHAM) are less effective than the other inhibitors against protist and plant AOX. A Caver analysis indicated that the rTAO and rAtAOX1A differ with respect to the mixture of polar residues lining the hydrophobic cavity, which may account for the observed difference in kinetic and inhibitor sensitivities. The data obtained in this study are not only beneficial for our understanding of the variation in the kinetics of AOX within protozoa and plants but also contribute to the guidance for the future development of phytopathogenic fungicides.


2013 ◽  
Vol 196 (3) ◽  
pp. 595-603 ◽  
Author(s):  
C. Poza-Carrion ◽  
E. Jimenez-Vicente ◽  
M. Navarro-Rodriguez ◽  
C. Echavarri-Erasun ◽  
L. M. Rubio

Sign in / Sign up

Export Citation Format

Share Document