scholarly journals Long-Term Exposure of Agricultural Soil to Veterinary Antibiotics Changes the Population Structure of Symbiotic Nitrogen-Fixing Rhizobacteria Occupying Nodules of Soybeans (Glycine max)

2018 ◽  
Vol 84 (9) ◽  
Author(s):  
Cécile Revellin ◽  
Alain Hartmann ◽  
Sébastien Solanas ◽  
Edward Topp

ABSTRACTAntibiotics are entrained in agricultural soil through the application of manures from medicated animals. In the present study, a series of small field plots was established in 1999 that receive annual spring applications of a mixture of tylosin, sulfamethazine, and chlortetracycline at concentrations ranging from 0.1 to 10 mg · kg−1soil. These antibiotics are commonly used in commercial swine production. The field plots were cropped continuously for soybeans, and in 2012, after 14 annual antibiotic applications, the nodules from soybean roots were sampled and the occupying bradyrhizobia were characterized. Nodules and isolates were serotyped, and isolates were distinguished using 16S rRNA gene and 16S to 23S rRNA gene intergenic spacer region sequencing, multilocus sequence typing, and RSα fingerprinting. Treatment with the antibiotic mixture skewed the population of bradyrhizobia dominating the nodule occupancy, with a significantly larger proportion ofBradyrhizobium liaoningenseorganisms even at the lowest dose of 0.1 mg · kg−1soil. Likewise, all doses of antibiotics altered the distribution of RSα fingerprint types. Bradyrhizobia were phenotypically evaluated for their sensitivity to the antibiotics, and there was no association betweenin situtreatment and a decreased sensitivity to the drugs. Overall, long-term exposure to the antibiotic mixture altered the composition of bradyrhizobial populations occupying nitrogen-fixing nodules, apparently through an indirect effect not associated with the sensitivity to the drugs. Further work evaluating agronomic impacts is warranted.IMPORTANCEAntibiotics are entrained in agricultural soil through the application of animal or human waste or by irrigation with reused wastewater. Soybeans obtain nitrogen through symbiotic nitrogen fixation. Here, we evaluated the impact of 14 annual exposures to antibiotics commonly used in swine production on the distribution of bradyrhizobia occupying nitrogen-fixing nodules on soybean roots in a long-term field experiment. By means of various sequencing and genomic fingerprinting techniques, the repeated exposure to a mixture of tylosin, sulfamethazine, and chlortetracycline each at a nominal soil concentration of 0.1 mg · kg−1soil was found to modify the diversity and identity of bradyrhizobia occupying the nodules. Nodule occupancy was not associated with the level of sensitivity to the antibiotics, indicating that the observed effects were not due to the direct toxicity of the antibiotics on bradyrhizobia. Altogether, these results indicate the potential for long-term impacts of antibiotics on this agronomically important symbiosis.

2020 ◽  
Vol 41 (S1) ◽  
pp. s258-s259
Author(s):  
James Harrigan ◽  
Ebbing Lautenbach ◽  
Emily Reesey ◽  
Magda Wernovsky ◽  
Pam Tolomeo ◽  
...  

Background: Clinically diagnosed ventilator-associated pneumonia (VAP) is common in the long-term acute-care hospital (LTACH) setting and may contribute to adverse ventilator-associated events (VAEs). Pseudomonas aeruginosa is a common causative organism of VAP. We evaluated the impact of respiratory P. aeruginosa colonization and bacterial community dominance, both diagnosed and undiagnosed, on subsequent P. aeruginosa VAP and VAE events during long-term acute care. Methods: We enrolled 83 patients on LTACH admission for ventilator weaning, performed longitudinal sampling of endotracheal aspirates followed by 16S rRNA gene sequencing (Illumina HiSeq), and bacterial community profiling (QIIME2). Statistical analysis was performed with R and Stan; mixed-effects models were fit to relate the abundance of respiratory Psa on admission to clinically diagnosed VAP and VAE events. Results: Of the 83 patients included, 12 were diagnosed with P. aeruginosa pneumonia during the 14 days prior to LTACH admission (known P. aeruginosa), and 22 additional patients received anti–P. aeruginosa antibiotics within 48 hours of admission (suspected P. aeruginosa); 49 patients had no known or suspected P. aeruginosa (unknown P. aeruginosa). Among the known P. aeruginosa group, all 12 patients had P. aeruginosa detectable by 16S sequencing, with elevated admission P. aeruginosa proportional abundance (median, 0.97; IQR, 0.33–1). Among the suspected P. aeruginosa group, all 22 patients had P. aeruginosa detectable by 16S sequencing, with a wide range of admission P. aeruginosa proportional abundance (median, 0.0088; IQR, 0.00012–0.31). Of the 49 patients in the unknown group, 47 also had detectable respiratory Psa, and many had high P. aeruginosa proportional abundance at admission (median, 0.014; IQR, 0.00025–0.52). Incident P. aeruginosa VAP was observed within 30 days in 4 of the known P. aeruginosa patients (33.3%), 5 of the suspected P. aeruginosa patients (22.7%), and 8 of the unknown P. aeruginosa patients (16.3%). VAE was observed within 30 days in 1 of the known P. aeruginosa patients (8.3%), 2 of the suspected P. aeruginosa patients (9.1%), and 1 of the unknown P. aeruginosa patients (2%). Admission P. aeruginosa abundance was positively associated with VAP and VAE risk in all groups, but the association only achieved statistical significance in the unknown group (type S error <0.002 for 30-day VAP and <0.011 for 30-day VAE). Conclusions: We identified a high prevalence of unrecognized respiratory P. aeruginosa colonization among patients admitted to LTACH for weaning from mechanical ventilation. The admission P. aeruginosa proportional abundance was strongly associated with increased risk of incident P. aeruginosa VAP among these patients.Funding: NoneDisclosures: None


2021 ◽  
Vol 12 ◽  
Author(s):  
Charles S. Cockell ◽  
Bettina Schaefer ◽  
Cornelia Wuchter ◽  
Marco J. L. Coolen ◽  
Kliti Grice ◽  
...  

We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.


Author(s):  
A. Shore ◽  
R. D. Day ◽  
J. A. Stewart ◽  
C.A. Burge

Ocean acidification (OA) threatens the growth and function of coral reef ecosystems. A key component to coral health is the microbiome, but little is known about the impact of OA on coral microbiomes. A submarine CO2 vent at Maug Island in the Northern Marianas Islands provides a natural pH gradient to investigate coral responses to long-term OA conditions. Three coral species (Pocillopora eydouxi, Porites lobata, and Porites rus) were sampled from three sites where mean seawater pH is 8.04, 7.98, and 7.94. We characterized coral bacterial communities (using 16S rRNA gene sequencing) and determined pH of the extracellular calcifying fluid (ECF) (using skeletal boron isotopes) across the seawater pH gradient. Bacterial communities of both Porites species stabilized (decreases in community dispersion) with decreased seawater pH, coupled with large increases in the abundance of Endozoicomonas, an endosymbiont. P. lobata experienced a significant decrease in ECF pH near the vent, whereas P. rus experienced a trending decrease in ECF pH near the vent. By contrast, Pocillopora exhibited bacterial community destabilization (increases in community dispersion), with significant decreases in Endozoicomonas abundance, while its ECF pH remained unchanged across the pH gradient. Our study shows that OA has multiple consequences on Endozoicomonas abundance and suggests that Endozoicomonas abundance may be an indicator of coral response to OA. We reveal an interesting dichotomy between two facets of coral physiology (regulation of bacterial communities and regulation of calcification), highlighting the importance of multidisciplinary approaches to understanding coral health and function in a changing ocean. IMPORTANCE Ocean acidification (OA) is a consequence of anthropogenic CO2 emissions that is negatively impacting marine ecosystems such as coral reefs. OA affects many aspects of coral physiology, including growth (i.e. calcification) and disrupting associated bacterial communities. Coral-associated bacteria are important for host health, but it remains unclear how coral-associated bacterial communities will respond to future OA conditions. We document changes in coral-associated bacterial communities and changes to calcification physiology with long-term exposure to decreases in seawater pH that are environmentally relevant under mid-range IPCC emission scenarios (0.1 pH units). We also find species-specific responses that may reflect different responses to long-term OA. In Pocillopora, calcification physiology was highly regulated despite changing seawater conditions. In Porites spp., changes in bacterial communities do not reflect a breakdown of coral-bacterial symbiosis. Insights into calcification and host-microbe interactions are critical to predicting the health and function of different coral taxa to future OA conditions.


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 520-538 ◽  
Author(s):  
Rafael R. de la Haba ◽  
M. Carmen Márquez ◽  
R. Thane Papke ◽  
Antonio Ventosa

Multilocus sequence analysis (MLSA) protocols have been developed for species circumscription for many taxa. However, at present, no studies based on MLSA have been performed within any moderately halophilic bacterial group. To test the usefulness of MLSA with these kinds of micro-organisms, the family Halomonadaceae, which includes mainly halophilic bacteria, was chosen as a model. This family comprises ten genera with validly published names and 85 species of environmental, biotechnological and clinical interest. In some cases, the phylogenetic relationships between members of this family, based on 16S rRNA gene sequence comparisons, are not clear and a deep phylogenetic analysis using several housekeeping genes seemed appropriate. Here, MLSA was applied using the 16S rRNA, 23S rRNA, atpA, gyrB, rpoD and secA genes for species of the family Halomonadaceae. Phylogenetic trees based on the individual and concatenated gene sequences revealed that the family Halomonadaceae formed a monophyletic group of micro-organisms within the order Oceanospirillales. With the exception of the genera Halomonas and Modicisalibacter, all other genera within this family were phylogenetically coherent. Five of the six studied genes (16S rRNA, 23S rRNA, gyrB, rpoD and secA) showed a consistent evolutionary history. However, the results obtained with the atpA gene were different; thus, this gene may not be considered useful as an individual gene phylogenetic marker within this family. The phylogenetic methods produced variable results, with those generated from the maximum-likelihood and neighbour-joining algorithms being more similar than those obtained by maximum-parsimony methods. Horizontal gene transfer (HGT) plays an important evolutionary role in the family Halomonadaceae; however, the impact of recombination events in the phylogenetic analysis was minimized by concatenating the six loci, which agreed with the current taxonomic scheme for this family. Finally, the findings of this study also indicated that the 16S rRNA, gyrB and rpoD genes were the most suitable genes for future taxonomic studies using MLSA within the family Halomonadaceae.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
D. P. R. Herlemann ◽  
S. Markert ◽  
C. Meeske ◽  
A. F. Andersson ◽  
I. de Bruijn ◽  
...  

ABSTRACTEnclosure experiments are frequently used to investigate the impact of changing environmental conditions on microbial assemblages. Yet, how the incubation itself challenges complex bacterial communities is thus far unknown. In this study, metaproteomic profiling, 16S rRNA gene analyses, and cell counts were combined to evaluate bacterial communities derived from marine, mesohaline, and oligohaline conditions after long-term batch incubations. Early in the experiment, the three bacterial communities were highly diverse and differed significantly in their compositions. Manipulation of the enclosures with terrigenous dissolved organic carbon resulted in notable differences compared to the control enclosures at this early phase of the experiment. However, after 55 days, bacterial communities in the manipulated and the control enclosures under marine and mesohaline conditions were all dominated by gammaproteobacteriumSpongiibacter. In the oligohaline enclosures, actinobacterial cluster I of the hgc group (hgc-I) remained abundant in the late phase of the incubation. Metaproteome analyses suggested that the ability to use outer membrane-based internal energy stores, in addition to the previously described grazing resistance, may enable the gammaproteobacteriumSpongiibacterto prevail in long-time incubations. Under oligohaline conditions, the utilization of external recalcitrant carbon appeared to be more important (hgc-I). Enclosure experiments with complex natural microbial communities are important tools to investigate the effects of manipulations. However, species-specific properties, such as individual carbon storage strategies, can cause manipulation-independent effects and need to be considered when interpreting results from enclosures.IMPORTANCEIn microbial ecology, enclosure studies are often used to investigate the effect of single environmental factors on complex bacterial communities. However, in addition to the manipulation, unintended effects (“bottle effect”) may occur due to the enclosure itself. In this study, we analyzed the bacterial communities that originated from three different salinities of the Baltic Sea, comparing their compositions and physiological activities both at the early stage and after 55 days of incubation. Our results suggested that internal carbon storage strategies impact the success of certain bacterial species, independent of the experimental manipulation. Thus, while enclosure experiments remain valid tools in environmental research, microbial community composition shifts must be critically followed. This investigation of the metaproteome during long-term batch enclosures expanded our current understanding of the so-called “bottle effect,” which is well known to occur during enclosure experiments.


Diversity ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 61 ◽  
Author(s):  
Joel P. Dube ◽  
Angel Valverde ◽  
Joachim M. Steyn ◽  
Don A. Cowan ◽  
Jacqueline E. van der Waals

Land-use change from natural to managed agricultural ecosystems significantly impacts soil bacterial diversity and function. The Eastern Free State (EFS) is one of the most productive agricultural regions in South Africa. However, no studies aiming to understand the changes in bacterial diversity, composition and function due to land-use change in this area have been conducted. This study investigated, using high-throughput 16S rRNA gene amplicon sequencing, the effects of long-term agriculture on bacterial diversity, composition and putative function in the EFS by comparing microbiomes from lands that have been under agronomic activity for over 50 years to those from uncultivated land. Results indicate that agriculture increased bacterial diversity. Soil chemical analysis showed that land-use shifted soils from being oligotrophic to copiotrophic, which changed bacterial communities from being Actinobacteria dominated to Proteobacteria dominated. Predictive functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that agricultural soil was abundant in genes associated with plant fitness and plant growth promotion, while non-agricultural soil was abundant in genes related to organic matter degradation. Together, these results suggest that edaphic factors induced by long-term agriculture resulted in shifts in bacterial diversity and putative function in the EFS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lisa M. Hodges ◽  
Eduardo N. Taboada ◽  
Adam Koziol ◽  
Steven Mutschall ◽  
Burton W. Blais ◽  
...  

The increasing prevalence of antimicrobial resistance (AMR) in Campylobacter spp. is a global concern. This study evaluated the use of whole-genome sequencing (WGS) to predict AMR in Campylobacter jejuni and C. coli. A panel of 271 isolates recovered from Canadian poultry was used to compare AMR genotype to antimicrobial susceptibility testing (AST) results (azithromycin, ciprofloxacin, erythromycin, gentamicin, tetracycline, florfenicol, nalidixic acid, telithromycin, and clindamycin). The presence of antibiotic resistance genes (ARGs) was determined for each isolate using five computational approaches to evaluate the effect of: ARG screening software, input data (i.e., raw reads, draft genome assemblies), genome coverage and genome assembly software. Overall, concordance between the genotype and phenotype was influenced by the computational pipelines, level of genome coverage and the type of ARG but not by input data. For example, three of the pipelines showed a 99% agreement between detection of a tet(O) gene and tetracycline resistance, whereas agreement between the detection of tet(O) and TET resistance was 98 and 93% for two pipelines. Overall, higher levels of genome coverage were needed to reliably detect some ARGs; for example, at 15X coverage a tet(O) gene was detected in &gt;70% of the genomes, compared to &lt;60% of the genomes for bla(OXA). No genes associated with florfenicol or gentamicin resistance were found in the set of strains included in this study, consistent with AST results. Macrolide and fluoroquinolone resistance was associated 100% with mutations in the 23S rRNA (A2075G) and gyrA (T86I) genes, respectively. A lower association between a A2075G 23S rRNA gene mutation and resistance to clindamycin and telithromycin (92.8 and 78.6%, respectively) was found. While WGS is an effective approach to predicting AMR in Campylobacter, this study demonstrated the impact that computational pipelines, genome coverage and the genes can have on the reliable identification of an AMR genotype.


2021 ◽  
pp. sextrans-2021-054988
Author(s):  
Michelle Jayne Cole ◽  
Grahame S Davis ◽  
Helen Fifer ◽  
John Michael Saunders ◽  
Magnus Unemo ◽  
...  

ObjectivesA Finnish Chlamydia trachomatis (CT) new variant was detected in 2019 that escaped detection in the Hologic Aptima Combo 2 (AC2) assay due to a C1515T mutation in the CT 23S rRNA target region. Reflex testing of CT-negative/CT-equivocal specimens as well as those positive for Neisseria gonorrhoeae (NG) with the Hologic Aptima CT (ACT) assay was recommended to identify any CT variants.MethodsFrom June to October 2019, specimens with discrepant AC2/ACT CT results were submitted to Public Health England and screened for detectable CT DNA using an inhouse real-time (RT)-PCR. When enough DNA was present, partial CT 23S rRNA gene sequencing was performed. Analysis of available relative light units and interpretative data was performed.ResultsA total of 317 discordant AC2/ACT specimens were collected from 315 patients. Three hundred were tested on the RT-PCR; 53.3% (n=160) were negative and 46.7% (n=140) were positive. Due to low DNA load in most specimens, sequencing was successful for only 36 specimens. The CT 23S rRNA wild-type sequence was present in 32 specimens, and two variants with C1514T or G1523A mutation were detected in four specimens from three patients. Of the discordant specimens with NG interpretation, 36.6% of NG-negative/CT-negative AC2 specimens had detectable CT DNA on the inhouse RT-PCR vs 53.3% of NG-positive/CT-negative specimens.ConclusionsNo widespread dissemination of AC2 diagnostic-escape CT variants has occurred in England. We however identified the impact of NG positivity on the discordant AC2/ACT specimens; a proportion appeared due to NG positivity and the associated NG signal, rather than any diagnostic-escape variants or low DNA load. Several patients with gonorrhoea may therefore receive false-negative AC2 CT results. Single diagnostic targets and multiplex diagnostic assays have their limitations such as providing selection pressure for escape mutants and potentially reduced sensitivity, respectively. These limitations must be considered when establishing diagnostic pathways.


Sign in / Sign up

Export Citation Format

Share Document