scholarly journals The effect of low temperature on patterns of cell division in developing second leaves of wild-type and slender mutant barley (Hordeum vulgare L.)

1998 ◽  
Vol 21 (1) ◽  
pp. 79-86 ◽  
Author(s):  
J. Harrison ◽  
C. Nicot ◽  
H. Ougham
2020 ◽  
Vol 21 (4) ◽  
pp. 1546 ◽  
Author(s):  
Olga A. Andrzejczak ◽  
Jesper F. Havelund ◽  
Wei-Qing Wang ◽  
Sergey Kovalchuk ◽  
Christina E. Hagensen ◽  
...  

Overexpression of phytoglobins (formerly plant hemoglobins) increases the survival rate of plant tissues under hypoxia stress by the following two known mechanisms: (1) scavenging of nitric oxide (NO) in the phytoglobin/NO cycle and (2) mimicking ethylene priming to hypoxia when NO scavenging activates transcription factors that are regulated by levels of NO and O2 in the N-end rule pathway. To map the cellular and metabolic effects of hypoxia in barley (Hordeum vulgare L., cv. Golden Promise), with or without priming to hypoxia, we studied the proteome and metabolome of wild type (WT) and hemoglobin overexpressing (HO) plants in normoxia and after 24 h hypoxia (WT24, HO24). The WT plants were more susceptible to hypoxia than HO plants. The chlorophyll a + b content was lowered by 50% and biomass by 30% in WT24 compared to WT, while HO plants were unaffected. We observed an increase in ROS production during hypoxia treatment in WT seedlings that was not observed in HO seedlings. We identified and quantified 9694 proteins out of which 1107 changed significantly in abundance. Many proteins, such as ion transporters, Ca2+-signal transduction, and proteins related to protein degradation were downregulated in HO plants during hypoxia, but not in WT plants. Changes in the levels of histones indicates that chromatin restructuring plays a role in the priming of hypoxia. We also identified and quantified 1470 metabolites, of which the abundance of >500 changed significantly. In summary the data confirm known mechanisms of hypoxia priming by ethylene priming and N-end rule activation; however, the data also indicate the existence of other mechanisms for hypoxia priming in plants.


Author(s):  
Sung Chul Bahn ◽  
Min Seok Bae ◽  
Yong Bum Park ◽  
Seung-Ick Oh ◽  
Ji Ung Jeung ◽  
...  

1981 ◽  
Vol 46 (1-2) ◽  
pp. 53-64 ◽  
Author(s):  
Barbro Jende-Strid ◽  
Birger Lindberg Møller

1995 ◽  
Vol 73 (12) ◽  
pp. 1849-1858 ◽  
Author(s):  
B. E. Nichol ◽  
L. A. Oliveira

Aluminum-induced inhibition of root growth in the Al-sensitive cultivar Kearney of barley (Hordeum vulgare L.) is the result of disruption of both cell division in the meristematic region and cell expansion in the zone of elongation of the roots. In seedlings directly germinated in 50 μM Al, inhibition of root growth is detected 48 h after initiation of germination and it results primarily from the disruption of cell elongation. In seedlings germinated for 2 days under Al-free conditions, inhibition of root growth is apparent 8 h after transfer to 50 μM Al. In this instance, root growth inhibition is mainly the result of disruption of cell division in the meristematic region of the root. The calcium indicator dyes chlorotetracycline and Fluo-3 are used to study the distribution of intracellular calcium and its relationship to aluminum phototoxicity. Aluminum increases both chlorotetracycline and Fluo-3 fluorescence intensities. Fluorescence of the cytosolic calcium indicator dye Fluo-3 increases primarily in the zone of elongation of the roots of seedlings directly germinated in 50 μM aluminum. The increase in Fluo-3 fluorescence occurs concomitantly with major changes in both the length and width of the cells in the zone of elongation. The evidence suggests that changes in calcium homeostasis occurring in cells of the zone of elongation may be a major factor in the disruption of cell expansion and consequently root growth in seedlings directly germinated in 50 μM aluminum. Key words: aluminum, calcium, barley, chlorotetracycline, Fluo-3.


Biologia ◽  
2010 ◽  
Vol 65 (6) ◽  
Author(s):  
Selma Tabur ◽  
Kıymet Demir

AbstractThe effects of exogenous polyamines (PAs): spermine (Spm), spermidine (Spd), cadaverine (Cad) and putrescine (Put) on mitotic activity and chromosomal aberrations in root meristem cells of Hordeum vulgare L. (barley) seeds exposed to salinity were analyzed. The PAs significantly inhibited cell division in distilled water. Furthermore, most of these PAs (except for Spd) caused a significant increase in the frequency of chromosomal aberrations as compared to control group. Seeds treated with Put caused the highest percentage of mitotic abnormalities in total. The negative effect of salinity on mitotic index and the frequency of chromosomal aberrations increased with increasing salt concentration. PAs studied could not be successful in ameliorating of the negative effect of salinity on mitotic activity. Particularly, exposure to Cad and 0.40 M NaCl caused a complete block of cell division in total. However, most of the PA studied showed a perfectly performance in alleviating the detrimental effects of increasing salinity on chromosomal aberrations.


1979 ◽  
Vol 44 (4) ◽  
pp. 235-254 ◽  
Author(s):  
Otto Machold ◽  
David J. Simpson ◽  
Birger Lindberg Møller

Sign in / Sign up

Export Citation Format

Share Document