Expression of genes encoding the E2 and E3 components of the Bacillus stearothermophilus pyruvate dehydrogenase complex and the stoichiometry of subunit interaction in assembly in vitro

1998 ◽  
Vol 258 (2) ◽  
pp. 491-501 ◽  
Author(s):  
Ivan A. D. Lessard ◽  
Gonzalo J. Domingo ◽  
Adolfo Borges ◽  
Richard N. Perham
2013 ◽  
Vol 79 (18) ◽  
pp. 5566-5575 ◽  
Author(s):  
Jens Buchholz ◽  
Andreas Schwentner ◽  
Britta Brunnenkan ◽  
Christina Gabris ◽  
Simon Grimm ◽  
...  

ABSTRACTExchange of the nativeCorynebacterium glutamicumpromoter of theaceEgene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutateddapApromoter variants led to a series ofC. glutamicumstrains with gradually reduced growth rates and PDHC activities. Upon overexpression of thel-valine biosynthetic genesilvBNCE, all strains producedl-valine. Among these strains,C. glutamicum aceEA16 (pJC4ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of thepqoandppcgenes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities,C. glutamicum aceEA16 Δpqo Δppc(pJC4ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter)l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression ofilvBNCDinstead ofilvBNCEtransformed thel-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with aYP/Sof 0.24 mol per mol of glucose and aQPof 6.9 mM per h [0.8 g/(liter × h)]. The replacement of theaceEpromoter by thedapA-A16 promoter in the twoC. glutamicuml-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate thatC. glutamicumstrains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.


1985 ◽  
Vol 40 (11-12) ◽  
pp. 917-918 ◽  
Author(s):  
Uwe Homeyer ◽  
D. Schulze-Siebert ◽  
G. Schultz

Abstract In vitro incubation of intact spinach chloroplasts with 1 mᴍ Pyruvate was used to study the specificity of action of the herbicide Chlorsulfuron on the synthesis of valine, alanine and fatty acids. As a result, increasing concentrations of the herbicide strongly inhibited valine synthesis while fatty acid synthesis via pyruvate dehydrogenase complex (PDC) and alanine formation by transamination reaction was promoted.


1993 ◽  
Vol 289 (1) ◽  
pp. 81-85 ◽  
Author(s):  
J Quinn ◽  
A G Diamond ◽  
A K Masters ◽  
D E Brookfield ◽  
N G Wallis ◽  
...  

The dihydrolipoamide acetyltransferase subunit (E2p) of mammalian pyruvate dehydrogenase complex has two highly conserved lipoyl domains each modified with a lipoyl cofactor bound in amide linkage to a specific lysine residue. A sub-gene encoding the inner lipoyl domain of human E2p has been over-expressed in Escherichia coli. Two forms of the domain have been purified, corresponding to lipoylated and non-lipoylated species. The apo-domain can be lipoylated in vitro with partially purified E. coli lipoate protein ligase, and the lipoylated domain can be reductively acetylated by human E1p (pyruvate dehydrogenase). Availability of the two forms will now allow detailed biochemical and structural studies of the human lipoyl domains.


1987 ◽  
Vol 248 (2) ◽  
pp. 351-358 ◽  
Author(s):  
B Laber ◽  
N Amrhein

The alanine analogue 1-aminoethylphosphinate [H3C-CH(NH2)-PO2H2] effectively inhibited anthocyanin synthesis in buckwheat hypocotyls and caused an increase in the concentrations of alanine and alanine-derived metabolites. Aminotransferase inhibitors partially alleviated the effects of the analogue. 1-Aminoethylphosphinate did not affect the growth of Klebsiella pneumoniae under anaerobic conditions, but under aerobic conditions it inhibited growth and caused the massive excretion of pyruvate. The analogue inhibited the pyruvate dehydrogenase complex in vitro in the presence of an aminotransferase activity. The transamination product of 1-aminoethylphosphinate, acetylphosphinate (H3C-CO-PO2H2), was found to inhibit the pyruvate dehydrogenase complex in a time-dependent reaction that followed first-order and saturation kinetics and required the presence of thiamin pyrophosphate.


Biochemistry ◽  
2000 ◽  
Vol 39 (49) ◽  
pp. 15166-15178 ◽  
Author(s):  
J. Richard Miller ◽  
Robert W. Busby ◽  
Sean W. Jordan ◽  
Jennifer Cheek ◽  
Timothy F. Henshaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document