Structural analysis of the core region of lipopolysaccharides from Proteus mirabilis serotypes O6, O48 and O57

2000 ◽  
Vol 267 (8) ◽  
pp. 2439-2447 ◽  
Author(s):  
Evgeny Vinogradov ◽  
Malcolm B. Perry
1989 ◽  
Vol 183 (3) ◽  
pp. 573-581 ◽  
Author(s):  
Joanna RADZIEJEWSKA-LEBRECHT ◽  
Hubert MAYER

Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 94 ◽  
Author(s):  
Dario Fasino ◽  
Franca Rinaldi

The core–periphery structure is one of the key concepts in the structural analysis of complex networks. It consists of a partitioning of the node set of a given graph or network into two groups, called core and periphery, where the core nodes induce a well-connected subgraph and share connections with peripheral nodes, while the peripheral nodes are loosely connected to the core nodes and other peripheral nodes. We propose a polynomial-time algorithm to detect core–periphery structures in networks having a symmetric adjacency matrix. The core set is defined as the solution of a combinatorial optimization problem, which has a pleasant symmetry with respect to graph complementation. We provide a complete description of the optimal solutions to that problem and an exact and efficient algorithm to compute them. The proposed approach is extended to networks with loops and oriented edges. Numerical simulations are carried out on both synthetic and real-world networks to demonstrate the effectiveness and practicability of the proposed algorithm.


1984 ◽  
Vol 108 ◽  
pp. 257-258
Author(s):  
Michael Rosa ◽  
Jorge Melnick ◽  
Preben Grosbol

The massive H II region NGC 3603 is the closest galactic counterpart to the giant LMC nebula 30 Dor. Walborn (1973) first compared the ionizing OB/WR clusters of the two H II regions and suggested that R 136, the unresolved luminous WR + 0 type central object of 30 Dor, might be a multiple system like the core region of NGC 3603. Suggestions that the dominant component of R 136, i.e. R 136A, might be either a single or a very few supermassive and superluminous stars (Schmidt-Kaler and Feitzinger 1982, Savage et al. 1983) have recently been disputed by Moffat and Seggewiss (1983) and Melnick (1983), who have presented spectroscopic and photometric evidence to support the hypothesis of an unresolved cluster of stars. We have extended Walborn's original comparison of the apparent morphology of the two clusters by digital treatment of the images to simulate how the galactic cluster would look like if it were located in the LMC


Sign in / Sign up

Export Citation Format

Share Document