Ex Vivo Measurement of Brain Tissue Nitrite and Nitrate Accurately Reflects Nitric Oxide Synthase Activity In Vivo

2002 ◽  
Vol 66 (4) ◽  
pp. 1683-1690 ◽  
Author(s):  
Mark Salter ◽  
Claire Duffy ◽  
John Garthwaite ◽  
Paul J. L. M. Strijbos
1999 ◽  
Vol 826 (2) ◽  
pp. 303-305 ◽  
Author(s):  
Vallo Volke ◽  
Gregers Wegener ◽  
Eero Vasar ◽  
Raben Rosenberg

1999 ◽  
Vol 163 (1) ◽  
pp. 39-48 ◽  
Author(s):  
B Akesson ◽  
R Henningsson ◽  
A Salehi ◽  
I Lundquist

We have studied, by a combined in vitro and in vivo approach, the relation between the inhibitory action of N(G)-nitro-l-arginine methyl ester (L-NAME), a selective inhibitor of nitric oxide synthase (NOS), on the activity of islet constitutive NOS (cNOS) and glucose regulation of islet hormone release in mice. The cNOS activity in islets incubated in vitro at 20 mM glucose was not appreciably affected by 0.05 or 0.5 mM L-NAME, but was greatly suppressed (-60%) by 5 mM L-NAME. Similarly, glucose-stimulated insulin release was unaffected by the lower concentrations of L-NAME but greatly enhanced in the presence of 5 mM of the NOS inhibitor. In incubated islets inhibition of cNOS activity resulted in a modestly enhanced insulin release in the absence of glucose, did not display any effect at physiological or subphysiological glucose concentrations, but resulted in a markedly potentiated insulin release at hyperglycaemic glucose concentrations. In the absence of glucose, glucagon secretion was suppressed by L-NAME. The dynamics of glucose-induced insulin release and (45)Ca(2+) efflux from perifused islets revealed that L-NAME caused an immediate potentiation of insulin release, and a slight increase in (45)Ca(2+) efflux. In islets depolarized with 30 mM K(+) in the presence of the K(+)(ATP) channel opener, diazoxide, L-NAME still greatly potentiated glucose-induced insulin release. Finally, an i.v. injection of glucose to mice pretreated with L-NAME was followed by a markedly potentiated insulin response, and an improved glucose tolerance. In accordance, islets isolated directly ex vivo after L-NAME injection displayed a markedly reduced cNOS activity. In conclusion, we have shown here, for the first time, that biochemically verified suppression of islet cNOS activity, induced by the NOS inhibitor L-NAME, is accompanied by a marked potentiation of glucose-stimulated insulin release both in vitro and in vivo. The major action of NO to inhibit glucose-induced insulin release is probably not primarily linked to changes in Ca(2+) fluxes and is exerted mainly independently of membrane depolarization events.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Mona Soliman

Resuscitation following hemorrhagic shock result in myocardial contractile dysfunction and injury. We examined the protective effects of non-selective inhibitor of nitric oxide synthase N(G)-nitro-L-arginine methylester (L-NAME) on myocardial contractile function in the isolated perfused hearts, after ex vivo as well as in vivo treatment with L-NAME and resuscitation following one hour of hemorrhagic shock.Male Sprague Dawley rats (300-350 gm) were assigned to 2 sets of experimental protocols: ex vivo and in vivo treatment and resuscitation. Each set has 3 experimental groups (n= 6 per group): normotensive (N), hemorrhagic shock and resuscitation (HS-R) and hemorrhagic shock rats treated with L-NAME and resuscitated (HS- L-NAME-R). Rats were hemorrhaged over 60 min to reach a mean arterial blood pressure of 40 mmHg. In the ex vivo group, hearts were harvested and ex vivo treated and resuscitated by perfused in the Langendorff System. In the L-NAME treated group, L-NAME was added for the first 5 min . Cardiac function was measured Left ventricular generated pressure and +dP/dt were calculated. In the in vivo group, rats were treated with L-NAME intra-arterially after 60 min hemorrhagic shock. Resuscitation was performed in vivo by the reinfusion of the shed blood for 30 min to restore normo-tension. Inhibition of nitric oxide synthase using L-NAME before resuscitation in ex vivo treated and resuscitated isolated hearts and in in vivo treated and resuscitated rats following hemorrhagic shock improved myocardial contractile function. Left ventricular generated pressure and + dP/dt max was significantly higher in L-NAME treated rats compared to the untreated group.Treatment with L-NAME improved left ventricular generated pressure following hemorrhagic shock in the ex vivo as well as the in vivo treated and resuscitated rats. The results indicate that L-NAME protects the myocardium against dysfunction by inhibiting NOS.


Sign in / Sign up

Export Citation Format

Share Document