scholarly journals Transcriptional and Posttranscriptional Control of Tyrosine Hydroxylase Gene Expression During Persistent Stimulation of Pituitary Adenylate Cyclase-Activating Polypeptide Receptors on PC12 Cells: Regulation by Protein Kinase A-Dependent and Protein Kinas

2002 ◽  
Vol 71 (2) ◽  
pp. 478-486 ◽  
Author(s):  
James Corbitt ◽  
Jeevalatha Vivekananda ◽  
Shou Shu Wang ◽  
Randy Strong
2000 ◽  
Vol 78 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Anderson OL Wong ◽  
Wen Sheng Li ◽  
Eric KY Lee ◽  
Mei Yee Leung ◽  
Lai Yin Tse ◽  
...  

Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel member of the secretin-glucagon peptide family. In mammals, this peptide has been located in a wide range of tissues and is involved in a variety of biological functions. In lower vertebrates, especially fish, increasing evidence suggests that PACAP may function as a hypophysiotropic factor regulating pituitary hormone secretion. PACAP has been identified in the brain-pituitary axis of representative fish species. The molecular structure of fish PACAP is highly homologous to mammalian PACAP. The prepro-PACAP in fish, however, is distinct from that of mammals as it also contains the sequence of fish GHRH. In teleosts, the anterior pituitary is under direct innervation of the hypothalamus and PACAP nerve fibers have been identified in the pars distalis. Using the goldfish as a fish model, mRNA transcripts of PACAP receptors, namely the PAC1 and VPAC1 receptors, have been identified in the pituitary as well as in various brain areas. Consistent with the pituitary expression of PACAP receptors, PACAP analogs are effective in stimulating growth hormone (GH) and gonadotropin (GTH)-II secretion in the goldfish both in vivo and in vitro. The GH-releasing action of PACAP is mediated via pituitary PAC1 receptors coupled to the adenylate cyclase-cAMP-protein kinase A and phospholipase C-IP3-protein kinase C pathways. Subsequent stimulation of Ca2+ entry through voltage-sensitive Ca2+ channels followed by activation of Ca2+-calmodulin protein kinase II is likely the downstream mechanism mediating PACAP-stimulated GH release in goldfish. Although the PACAP receptor subtype(s) and the associated post-receptor signaling events responsible for PACAP-stimulated GTH-II release have not been characterized in goldfish, these findings support the hypothesis that PACAP is produced in the hypothalamus and delivered to the anterior pituitary to regulate GH and GTH-II release in fish.Key words: PACAP, VIP, PAC1 receptor, VPAC1 receptor, VPAC2 receptor, growth hormone, gonadotropin-II, cAMP, protein kinase A, protein kinase C, calcium, pituitary cells, goldfish, and teleost.


2009 ◽  
Vol 83 (13) ◽  
pp. 6391-6403 ◽  
Author(s):  
Jinxiang Yuan ◽  
Xiaoqiu Liu ◽  
Allen W. Wu ◽  
Patrick W. McGonagill ◽  
Michael J. Keller ◽  
...  

ABSTRACT The triggering mechanisms underlying reactivation of human cytomegalovirus (HCMV) in latently infected persons are unclear. During latency, HCMV major immediate-early (MIE) gene expression breaks silence to initiate viral reactivation. Using quiescently HCMV-infected human pluripotent embryonal NTera2 cells (NT2) to model HCMV reactivation, we show that vasoactive intestinal peptide (VIP), an immunomodulatory neuropeptide, immediately and dose-dependently (1 to 500 nM) activates HCMV MIE gene expression. This response requires the MIE enhancer cyclic AMP response elements (CRE). VIP quickly elevates CREB Ser133 and ATF-1 Ser63 phosphorylation levels, although the CREB Ser133 phosphorylation level is substantial at baseline. VIP does not change the level of HCMV genomes in nuclei, Oct4 (pluripotent cell marker), or hDaxx (cellular repressor of HCMV gene expression). VIP-activated MIE gene expression is mediated by cellular protein kinase A (PKA), CREB, and TORC2. VIP induces PKA-dependent TORC2 Ser171 dephosphorylation and nuclear entry, which likely enables MIE gene activation, as TORC2 S171A (devoid of Ser171 phosphorylation) exhibits enhanced nuclear entry and desilences the MIE genes in the absence of VIP stimulation. In conclusion, VIP stimulation of the PKA-CREB-TORC2 signaling cascade activates HCMV CRE-dependent MIE gene expression in quiescently infected NT2 cells. We speculate that neurohormonal stimulation via this signaling cascade is a possible means for reversing HCMV silence in vivo.


2012 ◽  
Vol 78 (7) ◽  
pp. 2168-2178 ◽  
Author(s):  
André Schuster ◽  
Doris Tisch ◽  
Verena Seidl-Seiboth ◽  
Christian P. Kubicek ◽  
Monika Schmoll

ABSTRACTThe cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies ofTrichoderma reesei(anamorph ofHypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within thecel6a/cbh2promoter in light and darkness and in the absence ofpkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression inT. reeseiand have a dampening effect on the light responsiveness of this process.


Sign in / Sign up

Export Citation Format

Share Document