Protein Kinase A-Dependent Substance P Expression by Pituitary Adenylate Cyclase-Activating Polypeptide in Rat Sensory Neuronal Cell Line ND7/23 Cells

2012 ◽  
Vol 48 (3) ◽  
pp. 541-549 ◽  
Author(s):  
Atsuko Inoue ◽  
Masatoshi Ohnishi ◽  
Chiharu Fukutomi ◽  
Miho Kanoh ◽  
Mutsumi Miyauchi ◽  
...  
2000 ◽  
Vol 78 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Anderson OL Wong ◽  
Wen Sheng Li ◽  
Eric KY Lee ◽  
Mei Yee Leung ◽  
Lai Yin Tse ◽  
...  

Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel member of the secretin-glucagon peptide family. In mammals, this peptide has been located in a wide range of tissues and is involved in a variety of biological functions. In lower vertebrates, especially fish, increasing evidence suggests that PACAP may function as a hypophysiotropic factor regulating pituitary hormone secretion. PACAP has been identified in the brain-pituitary axis of representative fish species. The molecular structure of fish PACAP is highly homologous to mammalian PACAP. The prepro-PACAP in fish, however, is distinct from that of mammals as it also contains the sequence of fish GHRH. In teleosts, the anterior pituitary is under direct innervation of the hypothalamus and PACAP nerve fibers have been identified in the pars distalis. Using the goldfish as a fish model, mRNA transcripts of PACAP receptors, namely the PAC1 and VPAC1 receptors, have been identified in the pituitary as well as in various brain areas. Consistent with the pituitary expression of PACAP receptors, PACAP analogs are effective in stimulating growth hormone (GH) and gonadotropin (GTH)-II secretion in the goldfish both in vivo and in vitro. The GH-releasing action of PACAP is mediated via pituitary PAC1 receptors coupled to the adenylate cyclase-cAMP-protein kinase A and phospholipase C-IP3-protein kinase C pathways. Subsequent stimulation of Ca2+ entry through voltage-sensitive Ca2+ channels followed by activation of Ca2+-calmodulin protein kinase II is likely the downstream mechanism mediating PACAP-stimulated GH release in goldfish. Although the PACAP receptor subtype(s) and the associated post-receptor signaling events responsible for PACAP-stimulated GTH-II release have not been characterized in goldfish, these findings support the hypothesis that PACAP is produced in the hypothalamus and delivered to the anterior pituitary to regulate GH and GTH-II release in fish.Key words: PACAP, VIP, PAC1 receptor, VPAC1 receptor, VPAC2 receptor, growth hormone, gonadotropin-II, cAMP, protein kinase A, protein kinase C, calcium, pituitary cells, goldfish, and teleost.


Endocrinology ◽  
2004 ◽  
Vol 145 (2) ◽  
pp. 716-727 ◽  
Author(s):  
George Vlotides ◽  
Kathrin Zitzmann ◽  
Sabine Hengge ◽  
Dieter Engelhardt ◽  
Gunter K. Stalla ◽  
...  

Abstract Novel neurotrophin-1/B cell stimulating factor-3 (NNT-1/BSF-3) is a gp130 cytokine potently stimulating corticotroph proopiomelanocortin gene expression and ACTH secretion by a Janus kinase-signal transducer and activator of transcription (JAK-STAT)-dependent mechanism. In the current study, we examined the regulation of NNT-1/BSF-3 mRNA expression in murine pituitary folliculostellate TtT/GF cells using Northern blot technique. A 5- to 9-fold and a 4- to 7-fold induction in NNT-1/BSF-3 mRNA expression was observed between 2 and 6 h stimulation with the protein kinase C (PKC) stimulus phorbol-12-myristate-13-acetate (100 nm) and the protein kinase A (PKA) stimulus Bu2cAMP (5 mm), respectively. Pituitary adenylate cyclase-activating polypeptide (PACAP-38, 50 nm) and vasoactive intestinal peptide (VIP, 50 nm) also stimulated NNT-1/BSF-3 mRNA expression 5- to 9-fold between 2 and 6 h. Preincubation with PKC and PKA inhibitors such as H-7 (20 μm), GF109203X (50 μm), and H-89 (50 μm) decreased the stimulatory effects of PACAP and VIP. Both PACAP-38 and VIP also rapidly induced ERK1/2 phosphorylation and their stimulatory effect on NNT-1/BSF-3 mRNA expression was reduced by the MAPK kinase/ERK kinase (MEK) inhibitor U0126 (10 μm). Dexamethasone (10−7m) was a potent inhibitor of phorbol-12-myristate-13-acetate-induced NNT-1/BSF-3 expression. RT-PCR analysis demonstrated TtT/GF cells to express the short and the hop variant but not the hip variant of the PACAP-1 receptor (PAC1-R). In addition, TtT/GF cells express the VIP/PACAP-2 receptor (VPAC2-R). In summary, NNT-1/BSF-3 is expressed in pituitary folliculostellate TtT/GF cells and induced by PKC-, PKA-, and ERK1/2-dependent mechanisms. The novel gp130 cytokine NNT-1/BSF-3 derived from folliculostellate cells might act as a paracrine neuroimmunoendocrine modulator of pituitary corticotroph function.


Sign in / Sign up

Export Citation Format

Share Document