cellulase gene
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 19)

H-INDEX

36
(FIVE YEARS 3)

Author(s):  
Athar Sadat Javanmard ◽  
Maryam M. Matin ◽  
Ahmad Reza Bahrami

Author(s):  
Yumeng Chen ◽  
Aibo Lin ◽  
Pei Liu ◽  
Xingjia Fan ◽  
Chuan Wu ◽  
...  

The filamentous fungus Trichoderma reesei is a model strain for cellulase production. Cellulase gene expression in T. reesei is controlled by multiple transcription factors. Here, we identified by comparative genomic screening a novel transcriptional activator ACE4 ( A ctivator of c ellulase e xpression 4) that positively regulates cellulase gene expression on cellulose in T. reesei . Disruption of the ace4 gene significantly decreased expression of four main cellulase genes, and the essential cellulase transcription factor encoding gene ace3 . Overexpression of ace4 increased cellulase production by approximately 22% compared to that in the parental strain. Further investigations using electrophoretic mobility shift assays, DNase I footprinting assays, and chromatin immunoprecipitation assays indicated that ACE4 directly binds to the promoter of cellulase genes by recognizing the two adjacent 5′-GGCC-3′ sequences. Additionally, ACE4 directly binds to the promoter of ace3 and, in turn, regulates the expression of ACE3 to facilitate cellulase production. Collectively, these results demonstrate an important role for ACE4 in regulating cellulase gene expression, which will contribute to understanding the mechanism underlying cellulase expression in T. reesei . IMPORTANCE T. reesei is commonly utilized in industry to produce cellulases, enzymes that degrade lignocellulosic biomass for the production of bioethanol and bio-based products. T. reesei is capable of rapidly initiating the biosynthesis of cellulases in the presence of cellulose, which has made it useful as a model fungus for studying gene expression in eukaryotes. Cellulase gene expression is controlled through multiple transcription factors at the transcriptional level. However, the molecular mechanisms by which transcription is controlled remain unclear. In the present study, we identified a novel transcription factor, ACE4, which regulates cellulase expression on cellulose by binding to the promoters of cellulase genes and the cellulase activator ace3 . Our study not only expands the general functional understanding of the novel transcription factor ACE4 but also provides evidence for the regulatory mechanism mediating gene expression in T. reesei .


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009351
Author(s):  
Lei Wang ◽  
Weixin Zhang ◽  
Yanli Cao ◽  
Fanglin Zheng ◽  
Guolei Zhao ◽  
...  

Cellulase production in filamentous fungus Trichoderma reesei is highly responsive to various environmental cues involving multiple positive and negative regulators. XYR1 (Xylanase regulator 1) has been identified as the key transcriptional activator of cellulase gene expression in T. reesei. However, the precise mechanism by which XYR1 achieves transcriptional activation of cellulase genes is still not fully understood. Here, we identified the TrCYC8/TUP1 complex as a novel coactivator for XYR1 in T. reesei. CYC8/TUP1 is the first identified transcriptional corepressor complex mediating repression of diverse genes in Saccharomyces cerevisiae. Knockdown of Trcyc8 or Trtup1 resulted in markedly impaired cellulase gene expression in T. reesei. We found that TrCYC8/TUP1 was recruited to cellulase gene promoters upon cellulose induction and this recruitment is dependent on XYR1. We further observed that repressed Trtup1 or Trcyc8 expression caused a strong defect in XYR1 occupancy and loss of histone H4 at cellulase gene promoters. The defects in XYR1 binding and transcriptional activation of target genes in Trtup1 or Trcyc8 repressed cells could not be overcome by XYR1 overexpression. Our results reveal a novel coactivator function for TrCYC8/TUP1 at the level of activator binding, and suggest a mechanism in which interdependent recruitment of XYR1 and TrCYC8/TUP1 to cellulase gene promoters represents an important regulatory circuit in ensuring the induced cellulase gene expression. These findings thus contribute to unveiling the intricate regulatory mechanism underlying XYR1-mediated cellulase gene activation and also provide an important clue that will help further improve cellulase production by T. reesei.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1372
Author(s):  
Yachao Li ◽  
Hao Chen ◽  
Xu Chu ◽  
Qiuyu Ma ◽  
Guanghong Liang ◽  
...  

The purpose of this study was to characterize the endogenous cellulase gene MaCel1 of Monochamus alternatus, which is an important vector of Bursaphelenchus xylophilus, a pine wood nematode, which causes pine wilt disease (PWD). In this study, MaCel1 was cloned by rapid amplification of cDNA end (RACE), and its expression analyzed by RT-qPCR (real-time quantitative PCR detecting). A total of 1778 bp of cDNA was obtained. The encoding region of this gene was 1509 bp in length, encoding a protein containing 502 amino acids with a molecular weight of 58.66 kDa, and the isoelectric point of 5.46. Sequence similarity analysis showed that the amino acids sequence of MaCel1 had high similarity with the β-Glucosinolate of Anoplophoraglabripennis and slightly lower similarity with other insect cellulase genes (GH1). The β-D-Glucosidase activity of MaCel1 was 256.02 ± 43.14 U/L with no β-Glucosinolate activity. MaCel1 gene was widely expressed in the intestine of M. alternatus. The expression level of MaCel1 gene in male (3.46) and female (3.51) adults was significantly higher than that in other developmental stages, and the lowest was in pupal stage (0.15). The results will help reveal the digestive mechanism of M. alternatus and lay the foundation for controlling PWD by controlling M. alternatus.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (9) ◽  
pp. e1008979
Author(s):  
Fanglin Zheng ◽  
Yanli Cao ◽  
Renfei Yang ◽  
Lei Wang ◽  
Xinxing Lv ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yun Luo ◽  
Mari Valkonen ◽  
Raymond E. Jackson ◽  
Jonathan M. Palmer ◽  
Aditya Bhalla ◽  
...  

2020 ◽  
Author(s):  
Yun Luo ◽  
Mari Valkonen ◽  
Raymond E. Jackson ◽  
Jonathan M. Palmer ◽  
Aditya Bhalla ◽  
...  

Abstract The authors have removed this preprint from Research Square.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sabrina Beier ◽  
Wolfgang Hinterdobler ◽  
Alberto Alonso Monroy ◽  
Hoda Bazafkan ◽  
Monika Schmoll

Sign in / Sign up

Export Citation Format

Share Document