scholarly journals Subcellular Distribution of Tight Junction-Associated Proteins (Occludin, ZO-1, ZO-2) in Rodent Skin

1998 ◽  
Vol 110 (6) ◽  
pp. 862-866 ◽  
Author(s):  
Kazumasa Morita ◽  
Masahiko Itoh ◽  
Mitinori Saitou ◽  
Yuhko Ando-Akatsuka ◽  
Mikio Furuse ◽  
...  
1998 ◽  
Vol 16 ◽  
pp. S71
Author(s):  
Kazumasa Morita ◽  
Masahiko Itoh ◽  
Mitinori Saitou ◽  
Yuhko Ando-Akatsuka ◽  
Mikio Furuse ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3922-3931 ◽  
Author(s):  
M. Carey Satterfield ◽  
Kathrin A. Dunlap ◽  
Kanako Hayashi ◽  
Robert C. Burghardt ◽  
Thomas E. Spencer ◽  
...  

In species with noninvasive implantation by conceptus trophectoderm, fetal/maternal communications occur across the endometrial epithelia. The present studies identified changes in junctional complexes in the ovine endometrium that regulate paracellular trafficking of water, ions, and other molecules, and the secretory capacity of the uterine epithelia. Distinct temporal and spatial alterations in occludin, tight junction protein 2, and claudin 1–4 proteins were observed in the endometrium of cyclic and early pregnant ewes. Dynamic changes in tight junction formation were characterized by an abundance of tight junction proteins on d 10 of the estrous cycle and pregnancy that substantially decreased by d 12. Early progesterone administration advanced conceptus development on d 9 and 12 that was associated with loss of tight-junction-associated proteins. Pregnancy increased tight-junction-associated proteins between d 14–16. Cadherin 1 and β-catenin, which form adherens junctions, were abundant in the endometrial glands, but decreased after d 10 of pregnancy in the luminal epithelium and then increased by d 16 with the onset of implantation. Results support the ideas that progesterone elicits transient decreases in tight and adherens junctions in the endometrial luminal epithelium between d 10–12 that increases selective serum and tissue fluid transudation to enhance blastocyst elongation, which is subsequently followed by an increase in tight and adherens junctions between d 14–16 that may be required for attachment and adherence of the trophectoderm for implantation. The continuous presence of tight and adherens junctions in the uterine glands would allow for vectorial secretion of trophic substances required for conceptus elongation and survival.


2020 ◽  
Author(s):  
Jing Wang ◽  
Xiaohua Zhang ◽  
Chongmei Yang ◽  
Shulei Zhao

Abstract Background: The endocannabinoid 2-arachidonoylglycerol (2-AG) is an anti-nociceptive lipid, which is inactivated through cellular uptake and subsequent catabolism by monoacylglycerol lipase (MAGL). The present study aimed to explore the effects of inhibition of MAGL on intestinal permeability. Methods: We first tested it in differentiated CaCO2 cells after 21 days’ culture. The rat model of water avoidance stress (WAS) was established, and rats were divided into four groups according to intervention. Rats received intraperitoneal injection (i.p.) of an MAGL inhibitor (JZL184) alone, JZL184 and the cannabinoid receptor 1 (CB1) antagonist (SR141716A), JZL184 and a cannabinoid receptor 2 (CB2) antagonist (AM630) or vehicle alone (control). We analyzed the fluorescein isothiocyanate-dextran (FD4) permeability and 2-AG level. Expression of MAGL and tight-junction-associated proteins were detected by western blot. Results: Compared with the control group, MAGL expression was higher and 2-AG levels lower among WAS rats. Intestinal permeability was increased following administration of JZL184 which occurred due to up-regulation of tight-junction-associated proteins Claudin-1, Claudin-2, Claudin-5 and Occludin.Conclusion: The effects of MAGL inhibition were mediated by CB1, indicating that MAGL may represent a novel target for the treatment of reduced intestinal permeability in the context of chronic stress.


2018 ◽  
Vol 315 (2) ◽  
pp. R312-R322 ◽  
Author(s):  
Dennis Kolosov ◽  
Scott P. Kelly

Molecular physiology of the tricellular tight junction (tTJ)-associated proteins lipolysis-stimulated lipoprotein receptor ( lsr, = angulin-1) and an immunoglobulin-like domain-containing receptor ( ildr2, ≈angulin-3) was examined in model trout gill epithelia. Transcripts encoding lsr and ildr2 are broadly expressed in trout organs. A reduction in lsr and ildr2 mRNA abundance was observed during and after confluence in flask-cultured gill cells. In contrast, as high-resistance and low-permeability characteristics developed in a model gill epithelium cultured on permeable polyethylene terephthalate membrane inserts, lsr and ildr2 transcript abundance increased. However, as epithelia entered the developmental plateau phase, lsr abundance returned to initial values, while ildr2 transcript abundance remained elevated. When mitochondrion-rich cells were introduced to model preparations, lsr mRNA abundance was unaltered and ildr2 mRNA abundance significantly increased. Transcript abundance of ildr2 was not altered in association with corticosteroid-induced tightening of the gill epithelium, while lsr mRNA abundance decreased. Transcriptional knockdown of the tTJ protein tricelluin (Tric) reduced Tric abundance, increased gill epithelium permeability, and increased lsr without significantly altering ildr2 transcript abundance. Data suggest that angulins contribute to fish gill epithelium barrier properties but that Lsr and Ildr2 seem likely to play different roles. This is because ildr2 typically exhibited increased abundance in association with decreased model permeability, while lsr abundance changed in a manner that suggested a role in Tric recruitment to the tTJ.


2016 ◽  
Vol 54 (12) ◽  
pp. 3009-3018 ◽  
Author(s):  
Meimei Duan ◽  
Yanmei Xing ◽  
Junqia Guo ◽  
Hao Chen ◽  
Rong Zhang

2001 ◽  
Vol 120 (5) ◽  
pp. A356
Author(s):  
Eitaro Taniguchi ◽  
Masaru Harada ◽  
Takumi Kawaguchi ◽  
Hiroto Kumemura ◽  
Shinichiro Hanada ◽  
...  

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Marie-Louise Möller ◽  
Ahmed Bulldan ◽  
Georgios Scheiner-Bobis

Androgens stimulate the expression of tight junction (TJ) proteins and the formation of the blood–testis barrier (BTB). Interactions of testosterone with the zinc transporter ZIP9 stimulate the expression of TJ-forming proteins and promote TJ formation in Sertoli cells. In order to investigate androgenic effects mediated by ZIP9 but not by the nuclear androgen receptor (AR), the effects of three tetrapeptides fitting the androgen binding site of ZIP9 were compared with those induced by testosterone in a Sertoli cell line expressing ZIP9 but not the AR. Three tetrapeptides and testosterone displaced testosterone-BSA-FITC from the surface of 93RS2 cells and stimulated the non-classical testosterone signaling pathway that includes the activation of Erk1/2 kinases and transcription factors CREB and ATF-1. The expression of the TJ-associated proteins ZO-1 and claudin-5 was triggered as was the re-distribution of claudin-1 from the cytosol to the membrane and nucleus. Furthermore, TJ formation was stimulated, indicated by increased transepithelial electrical resistance. Silencing ZIP9 expression by siRNA prevented all of these responses. These results are consistent with an alternative pathway for testosterone action at the BTB that does not involve the nuclear AR and highlight the significant role of ZIP9 as a cell-surface androgen receptor that stimulates TJ formation.


Sign in / Sign up

Export Citation Format

Share Document