scholarly journals Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure

1999 ◽  
Vol 55 (3) ◽  
pp. 1019-1027 ◽  
Author(s):  
Eiji Ishimura ◽  
Yoshiki Nishizawa ◽  
Masaaki Inaba ◽  
Naoki Matsumoto ◽  
Masanori Emoto ◽  
...  
1989 ◽  
Vol 17 (3) ◽  
pp. 226-242 ◽  
Author(s):  
E. Harju ◽  
R. Punnonen ◽  
R. Tuimala ◽  
J. Salmi ◽  
I. Paronen

The effects on general and bone metabolism of femoral neck fracture patients of 0.25 μg α-calcoid given orally twice daily ( n=9) and 25 μg calcitonin given subcutaneously 30 times ( n=10) in 10 weeks were studied against a control ( n=ll). Bone histology and histomorphometry showed non-age related osteoporosis in 30% and osteomalacia in 22% of the patients studied. Impaired serum vitamin D status was found in 47 – 88% of patients, secondary hyperparathyroidism and increased serum parathyroid hormone in 59% and decreased serum calcitonin levels in 69%. On histology, normal findings and non-age related osteoporosis on histology were associated with low serum levels of 25-hydroxyvitamin D3,1,25- and 24,25-dihydroxy vitamin D3. Very high serum levels of 1,25-dihydroxyvitamin D3 and low levels of 25-hydroxyvitamin D3 occurred in fracture patients with osteomalacia. Calcitonin improved calcium balance, reduced osteoporosis and increased the serum 1,25- and 24,25-dihydroxyvitamin D3 levels but had no effect on osteomalacia. Vitamin D reduced osteomalacia, slightly increased the serum 1,25-dihydroxyvitamin D3 concentration and decreased serum levels of parathyroid hormone. Both treatments gave a similar slight decrease in serum calcitonin concentrations. A mechanism of action for the treatments is suggested.


1983 ◽  
Vol 23 (2) ◽  
pp. 401-406 ◽  
Author(s):  
Joseph E. Zerwekh ◽  
John J. McPhaul ◽  
Tom F. Parker ◽  
Charles Y.C. Pak

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Yi Jiang ◽  
Liyan Liao ◽  
Jina Li ◽  
Larry Wang ◽  
Zhongjian Xie

Parathyroid glands contain the vitamin D receptor (VDR) and 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) and 24-hydroxylase (CYP24A1), which catalyze the production and degradation of 1,25-dihydroxyvitamin D [1,25(OH)2D], respectively. Previous studies have shown that the serum level of intact parathyroid hormone (iPTH) increases with age. We hypothesized that the expression of CYP27B1 or VDR in parathyroid glands decreases with age, which might account for the increased serum levels of iPTH due to decreased suppression of parathyroid hormone (PTH) secretion by 1,25(OH)2D in older people. To test this hypothesis, we examined relative expression levels of VDR, CYP27B1, CYP24A1, and PTH in specimens from parathyroid glands unintentionally removed during thyroidectomy for 70 patients varying in age from 10 to 70 years. The results showed that there was an inverse correlation between age and VDR, CYP27B1, and CYP24A1 expression (p<0.05). A significant positive correlation between PTH expression levels and age was also observed (p<0.05). These data indicate that older age is associated with decreased levels of VDR, CYP27B1, and CYP24A1 and increased levels of PTH in human parathyroid glands.


1984 ◽  
Vol 30 (3) ◽  
pp. 399-403 ◽  
Author(s):  
M J Jongen ◽  
F C Van Ginkel ◽  
W J van der Vijgh ◽  
S Kuiper ◽  
J C Netelenbos ◽  
...  

Abstract An international 19-laboratory survey was organized to compare assays for 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, and 1,25-dihydroxyvitamin D in plasma. Each participant received two ethanolic standard solutions of each metabolite and eight plasma samples. Each laboratory used its usual procedures. Mean interlaboratory coefficients of variation (CVs) for the eight plasma samples were 35%, 43%, and 52% for 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, and 1,25-dihydroxyvitamin D, respectively. Average CVs for the standard solutions were 27%, 23%, and 25%, respectively. Of the eight plasma samples, five had the same concentration for one of the metabolites. One sample was diluted to 0.6 times its original concentration and three samples were fortified with one or more of the metabolites under investigation. Fourteen of 18 laboratories (78%) could distinguish between the five unchanged samples and the modified ones with their 25-hydroxyvitamin D assay. Nine of 12 (75%) could distinguish the modified samples from the other samples with the 24,25-dihydroxyvitamin D assay. Only eight of 15 (53%) could do this their 1,25-dihydroxyvitamin D assay. Values from different laboratories evidently cannot be intercompared without making an actual comparison of the assay procedures. Furthermore, in case of clinical applications of these assays, each laboratory should establish its own reference values and should continually use an internal reference sample to assess the precision of the procedures.


Sign in / Sign up

Export Citation Format

Share Document