A Linear-Time Solution for All-SAT Problem Based on P System

2018 ◽  
Vol 27 (2) ◽  
pp. 367-373 ◽  
Author(s):  
Ping GUO ◽  
Jian ZHU ◽  
Haizhu CHEN ◽  
Ruilong YANG
Triangle ◽  
2018 ◽  
pp. 19
Author(s):  
Artiom Alhazov ◽  
Tseren-Onolt Ishdorj

In this paper we define a general class of P systems covering some biological operations with membranes, including evolution, communication, and modifying the membrane structure, and we describe and formally specify some of these operations: membrane merging, membrane separation, membrane release. We also investigate a particular combination of types of rules that can be used in solving the SAT problem in linear time.


Author(s):  
Jie Xue ◽  
◽  
Xiyu Liu ◽  
Wenxing Sun ◽  
Shuo Yan

This paper proposes a class of dynamic P systems with constraint of discrete Morse function (DMDP systems). Membrane structure is extended on complex. Rules control activities of membranes. New classes of rules and mechanism to change types of rules by discrete gradient vector field are provided as well.DMDP system extends P systems both in structures and rules. Solving air quality evaluation problem in linear time verifies the effectiveness ofDMDP systems. Since air quality evaluation problem has significance in many areas. The new P systems provide an alternative for traditional membrane computing.


Author(s):  
Amihood Amir ◽  
Ayelet Butman ◽  
Ely Porat

Histogram indexing , also known as jumbled pattern indexing and permutation indexing is one of the important current open problems in pattern matching. It was introduced about 6 years ago and has seen active research since. Yet, to date there is no algorithm that can preprocess a text T in time o (| T | 2 /polylog| T |) and achieve histogram indexing, even over a binary alphabet, in time independent of the text length. The pattern matching version of this problem has a simple linear-time solution. Block-mass pattern matching problem is a recently introduced problem, motivated by issues in mass-spectrometry. It is also an example of a pattern matching problem that has an efficient, almost linear-time solution but whose indexing version is daunting. However, for fixed finite alphabets, there has been progress made. In this paper, a strong connection between the histogram indexing problem and the block-mass pattern indexing problem is shown. The reduction we show between the two problems is amazingly simple. Its value lies in recognizing the connection between these two apparently disparate problems, rather than the complexity of the reduction. In addition, we show that for both these problems, even over unbounded alphabets, there are algorithms that preprocess a text T in time o (| T | 2 /polylog| T |) and enable answering indexing queries in time polynomial in the query length. The contributions of this paper are twofold: (i) we introduce the idea of allowing a trade-off between the preprocessing time and query time of various indexing problems that have been stumbling blocks in the literature. (ii) We take the first step in introducing a class of indexing problems that, we believe, cannot be pre-processed in time o (| T | 2 /polylog| T |) and enable linear-time query processing.


2007 ◽  
Vol 171 (2) ◽  
pp. 81-93 ◽  
Author(s):  
Daniel Díaz-Pernil ◽  
Miguel A. Gutiérrez-Naranjo ◽  
Mario J. Pérez-Jiménez ◽  
Agustín Riscos-Núñez

1985 ◽  
Vol 40 ◽  
pp. 67-84 ◽  
Author(s):  
Robert Paige ◽  
Robert E. Tarjan ◽  
Robert Bonic

2014 ◽  
Vol 568-570 ◽  
pp. 802-806
Author(s):  
Yun Yun Niu ◽  
Zhi Gao Wang

It is known that the Common Algorithmic Problem (CAP) has a nice property that several other NP-complete problems can be reduced to it in linear time. In the literature, the decision version of this problem can be efficiently solved with a family of recognizer P systems with active membranes with three electrical charges working in the maximally parallel way. We here work with a variant of P systems with active membranes that do not use polarizations and present a semi-uniform solution to CAP in the minimally parallel mode.


Sign in / Sign up

Export Citation Format

Share Document