Appropriate random phase feeding technique forsatellite-communication-on-the-move

2009 ◽  
Author(s):  
Wang Qiong ◽  
Yao Minli ◽  
Lin Zhiqiang
2007 ◽  
Vol 95 ◽  
pp. 411-415
Author(s):  
T. Hauffman ◽  
J.-B. Jorcin ◽  
Y. V. Ingelgem ◽  
T. Breugelmans ◽  
E. Tourwe ◽  
...  
Keyword(s):  

Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


Author(s):  
Aarushi Shrivastava ◽  
Janki Ballabh Sharma ◽  
Sunil Dutt Purohit

Objective: In the recent multimedia technology images play an integral role in communication. Here in this paper, we propose a new color image encryption method using FWT (Fractional Wavelet transform), double random phases and Arnold transform in HSV color domain. Methods: Firstly the image is changed into the HSV domain and the encoding is done using the FWT which is the combination of the fractional Fourier transform with wavelet transform and the two random phase masks are used in the double random phase encoding. In this one inverse DWT is taken at the end in order to obtain the encrypted image. To scramble the matrices the Arnold transform is used with different iterative values. The fractional order of FRFT, the wavelet family and the iterative numbers of Arnold transform are used as various secret keys in order to enhance the level of security of the proposed method. Results: The performance of the scheme is analyzed through its PSNR and SSIM values, key space, entropy, statistical analysis which demonstrates its effectiveness and feasibility of the proposed technique. Stimulation result verifies its robustness in comparison to nearby schemes. Conclusion: This method develops the better security, enlarged and sensitive key space with improved PSNR and SSIM. FWT reflecting time frequency information adds on to its flexibility with additional variables and making it more suitable for secure transmission.


Author(s):  
Tomohiro YASUDA ◽  
Haruki TANAKA ◽  
Kohei SHIGETA ◽  
Junichi TANIGUCHI ◽  
Toshikazu KITANO

1995 ◽  
Vol 60 (10) ◽  
pp. 1641-1652 ◽  
Author(s):  
Henri C. Benoît ◽  
Claude Strazielle

It has been shown that in light scattering experiments with polymers replacement of a solvent by a solvent mixture causes problems due to preferential adsorption of one of the solvents. The present paper extends this theory to be applicable to any angle of observation and any concentration by using the random phase approximation theory proposed by de Gennes. The corresponding formulas provide expressions for molecular weight, gyration radius, and the second virial coefficient, which enables measurements of these quantities provided enough information on molecular and thermodynamic quantities is available.


Author(s):  
Norman J. Morgenstern Horing

Chapter 09 Nonequilibrium Green’s functions (NEGF), including coupled-correlated (C) single- and multi-particle Green’s functions, are defined as averages weighted with the time-development operator U(t0+τ,t0). Linear conductivity is exhibited as a two-particle equilibrium Green’s function (Kubo-type formulation). Admitting particle sources (S:η,η+) and non-conservation of number, the non-equilibrium multi-particle Green’s functions are constructed with numbers of creation and annihilation operators that may differ, and they may be derived as variational derivatives with respect to sources η,η+ of a generating functional eW=TrU(t0+τ,t0)CS/TrU(t0+τ,t0)C. (In the non-interacting case this yields the n-particle Green’s function as a permanent/determinant of single-particle Green’s functions.) These variational relations yield a symmetric set of multi-particle Green’s function equations. Cumulants and the Linked Cluster Theorem are discussed and the Random Phase Approximation (RPA) is derived variationally. Schwinger’s variational differential formulation of perturbation theories for the Green’s function, self-energy, vertex operator, and also shielded potential perturbation theory, are reviewed. The Langreth Algebra arises from analytic continuation of integration of products of Green’s functions in imaginary time to the real-time axis with time-ordering along the integration contour in the complex time plane. An account of the Generalized Kadanoff-Baym Ansatz is presented.


1984 ◽  
Vol 86 ◽  
pp. 124-124
Author(s):  
T.J. McIlrath ◽  
V. Kaufman ◽  
J. Sugar ◽  
W.T. Hill ◽  
D. Cooper

Rapid ionization of Cs vapor in a heat pipe at 0.05 torr was achieved by pumping the 6s 2S½ – 7p 2P½ transition (f=0.007)1 with a flash-pumped dye laser at 4593.2A and I MW power output. Photoabsorptian initiated at the end of the laser pulse(≃ 0.5/s) showed the 5p5ns and nd series below and above the 5p52P3/2 threshold at 535.4A. Broad Beutler - Fano resonances appeared in the d series above threshold. The spectrum was recorded photographically on a 10.7m grazing incidence spectrograph using a continuum background generated by a BRV high-voltage spark source with a uranium anode. We will compare the line-shapes and the quantum defect (Lu-Fano2) plot with the predictions of a relativistic random phase calculation.


Sign in / Sign up

Export Citation Format

Share Document