The coordinated control strategies of a DC grid with energy storage system for renewable energy integration

Author(s):  
Liangzhong Yao ◽  
Chao Liu ◽  
Chunxia Wei ◽  
Zhiwen Suo ◽  
Yuanzhi Cao ◽  
...  
Author(s):  
Tomonori Goya ◽  
Kosuke Uchida ◽  
Yoshihisa Kinjyo ◽  
Tomonobu Senjyu ◽  
Atsushi Yona ◽  
...  

Nowadays, renewable energy systems such as wind turbine generators and photovoltaic systems are introduced to power systems. However, the renewable energy system is influenced by weather conditions, and the generated power of the renewable energy system is deviated. For the provision of deviated power, the battery energy storage system is introduced to suppress the deviation of the frequency and voltage in power system. However, it needs the large capacity of a battery system, which increases the capital cost. In this paper, we propose a coordinated control strategy between the diesel generator and the battery system to reduce the capital cost of battery, inverter capacity and storage capacity. The proposed control system incorporates the H-infinity control theory, which enables intuitive controller design in frequency domain. Effectiveness of the proposed control system is validated by simulation results.


2014 ◽  
Vol 1070-1072 ◽  
pp. 449-455 ◽  
Author(s):  
Xin Zhen Feng ◽  
Yi Bin Tao ◽  
Jin Hang Hu ◽  
Qiang Li

With the continuous development of distributed solar, wind power and other renewable energy sources, renewable energy sources which has its own features, such as intermittent and randomness volatility, brings great challenges to the stable operation of power grid. Aiming at meeting the requirement of balancing the fluctuating renewable energy sources of micro grid, this paper proposes the operating control strategies of the zinc bromine flow battery storage. Firstly, the equivalent mathematical model based on the working principle of the zinc bromine flow battery is established; Secondly, a dual closed-loop strategy for the DC/DC converter is proposed, of which the inner loop is peak current control on zinc bromine flow battery side inductance while the outer loop is a switch control by constant active power and trickle current. By resorting the DC/AC grid side converter, the stability of DC bus voltage is maintained; Then, this paper proposes the optimization power control strategies of zinc bromine battery energy storage system as a constraint of state of charge and DC bus voltage; Finally, a 50kW zinc bromine flow battery energy storage system test platform is built, and the charging and discharging characteristics of zinc bromine energy storage system (ZESS) is researched in grid-connected mode, the test results have shown that the proposed power optimization control strategies for zinc bromine energy storage system could smooth renewable energy sources power fluctuation.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2844 ◽  
Author(s):  
Changli Shi ◽  
Tongzhen Wei ◽  
Xisheng Tang ◽  
Long Zhou ◽  
Tongshuo Zhang

The widely used flywheel energy storage (FES) system has such advantages as high power density, no environment pollution, a long service life, a wide operating temperature range, and unlimited charging–discharging times. The flywheel array energy storage system (FAESS), which includes the multiple standardized flywheel energy storage unit (FESU), is an effective solution for obtaining large capacity and high-power energy storage. In this paper, the strategy for coordinating and controlling the charging–discharging of the FAESS is studied in depth. Firstly, a deep analysis is conducted on the loss generated during the charging–discharging process of the FESU. The results indicate that the loss is related to the charging–discharging of power. To solve the problems of over-charging, over-discharging, and overcurrent caused by traditional charging–discharging control strategies, this paper proposes a charging–discharging coordination control strategy based on the equal incremental principle (EIP). This strategy aims to minimize the total loss and establish a mathematical model of optimal coordination control with the constraints of total charging–discharging power, rated power limit, over-charging, over-discharging, and overcurrent. Based on the EIP, the optimal distribution scheme of power charging–discharging is determined. Secondly, this paper gives the specific implementation scheme of the optimal coordinated control strategy. Lastly, the charging–discharging coordinated control strategy is verified by examples. The results show that the coordinated control strategy can effectively reduce the loss during the charging–discharging process and can prevent over-charging, over-discharging, and overcurrent of the system. Overall, it has a better control effect than the existing charging–discharging control strategies.


Author(s):  
Arulmozhi Subramanian ◽  
Santha KR

<p>Multi port converters increasingly gain prominance in the recent past to interface renewable energy sources like photovoltaic cells, fuel cells with the load. Energy storage elements like battery and supercapacitors nd major place as an additional and alternate sources in systems with primary renewable energy sources to overcome its intermittency issues. As these energy storage element's charging and discharging cycles are to be controlled, an isolated bidirectional converter topology with transformer is used. The galvanic isolation provided by the high frequency ac link transformers in partly isolated and fully isolated topologies makes these converters most preferrable in high power applications like electric vehicles. A comprehensive review is performed on various three port partly isolated and fully isolated topologies addressed by dierent research groups. The key contributions on soft switching for reducing switching losses and improving overall converter efficiency with help of resonant elements are discussed. In addition, control strategies for power ow control with enhanced soft switching of partly isolated converters are highlighted. A summary of converter topologies is provided comparing power rating, device count, soft switching resonant elements and efficiency which gives an idea for selection of suitable topology for the desired system requirement.</p>


Sign in / Sign up

Export Citation Format

Share Document