Time of Flight Sphere-Based Reconstruction Algorithm and Processing Techniques For Multi-Monostatic Portal-Based Scanners

Author(s):  
K.P. Jaisle ◽  
C.M. Rappaport
Author(s):  
Marco Antonio Garduño-Ramón ◽  
Ivan Ramon Terol-Villalobos ◽  
Roque Alfredo Osornio-Rios ◽  
Luis Alberto Morales-Hernandez

2018 ◽  
Vol 25 (3) ◽  
pp. 587-592 ◽  
Author(s):  
Liang Chen ◽  
Qiang Xiao ◽  
Wei Liang ◽  
Jingxian Hong ◽  
Xingjiang Zou

Abstract Lamb wave tomography can be used to evaluate structural integrity. The time-of-flight (TOF) data are usually recorded as input to the reconstruction algorithm. For composite materials, TOF estimation is complicated due to their anisotropy. To reduce the effects of anisotropy on image reconstruction, the TOF data of flawed plates are revised according to baseline data obtained from an unflawed plate. Tomographic images are reconstructed using the original and revised TOF data, respectively. Results show that images reconstructed using the revised TOF data have better visual quality and that TOF data revision can substantially reduce the artifacts resulting from anisotropy in defect detection of composite materials.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Paulo R. R. V. Caribé ◽  
M. Koole ◽  
Yves D’Asseler ◽  
B. Van Den Broeck ◽  
S. Vandenberghe

Abstract Purpose Q.Clear is a block sequential regularized expectation maximization (BSREM) penalized-likelihood reconstruction algorithm for PET. It tries to improve image quality by controlling noise amplification during image reconstruction. In this study, the noise properties of this BSREM were compared to the ordered-subset expectation maximization (OSEM) algorithm for both phantom and patient data acquired on a state-of-the-art PET/CT. Methods The NEMA IQ phantom and a whole-body patient study were acquired on a GE DMI 3-rings system in list mode and different datasets with varying noise levels were generated. Phantom data was evaluated using four different contrast ratios. These were reconstructed using BSREM with different β-factors of 300–3000 and with a clinical setting used for OSEM including point spread function (PSF) and time-of-flight (TOF) information. Contrast recovery (CR), background noise levels (coefficient of variation, COV), and contrast-to-noise ratio (CNR) were used to determine the performance in the phantom data. Findings based on the phantom data were compared with clinical data. For the patient study, the SUV ratio, metabolic active tumor volumes (MATVs), and the signal-to-noise ratio (SNR) were evaluated using the liver as the background region. Results Based on the phantom data for the same count statistics, BSREM resulted in higher CR and CNR and lower COV than OSEM. The CR of OSEM matches to the CR of BSREM with β = 750 at high count statistics for 8:1. A similar trend was observed for the ratios 6:1 and 4:1. A dependence on sphere size, counting statistics, and contrast ratio was confirmed by the CNR of the ratio 2:1. BSREM with β = 750 for 2.5 and 1.0 min acquisition has comparable COV to the 10 and 5.0 min acquisitions using OSEM. This resulted in a noise reduction by a factor of 2–4 when using BSREM instead of OSEM. For the patient data, a similar trend was observed, and SNR was reduced by at least a factor of 2 while preserving contrast. Conclusion The BSREM reconstruction algorithm allowed a noise reduction without a loss of contrast by a factor of 2–4 compared to OSEM reconstructions for all data evaluated. This reduction can be used to lower the injected dose or shorten the acquisition time.


2014 ◽  
Vol 39 (3) ◽  
pp. e197-e201 ◽  
Author(s):  
Daniel Hausmann ◽  
Leonardo K. Bittencourt ◽  
Ulrike I. Attenberger ◽  
Metin Sertdemir ◽  
Anja Weidner ◽  
...  

2009 ◽  
Vol 26 (8) ◽  
pp. 1475-1492 ◽  
Author(s):  
Ivana Jovanović ◽  
Luciano Sbaiz ◽  
Martin Vetterli

Abstract Acoustic tomography is a type of inverse problem. The idea of estimating physical quantities that influence sound propagation by measuring the parameters of propagation has proven to be successful in many practical domains, including temperature and wind estimation in the atmosphere. However, in most of the previous work in this area, the algorithms used have not been proven mathematically to provide the correct solution to the inverse problem. This paper considers the problem of reconstructing 2D temperature and wind fields by using acoustic tomography setups. Primarily, it shows that the classical time-of-flight measurements are not sufficient to reconstruct wind fields. As a solution, an additional set of measurements related solely to the parameters of sound propagation—more precisely, to the angles of departure/arrival of sound waves—is suggested. To take the full benefit of this additional information, the bent-ray model of sound propagation is introduced. In this work, it is also shown that, when a temperature and a source-free 2D wind field are observed on bounded domains, the complete reconstruction is possible using only measurements of the time of flight. Conversely, the angles of departures/arrivals are sufficient to reconstruct a temperature and a curl-free 2D wind fields on bounded domains. Further, an iterative reconstruction algorithm is proposed and possible variations to the main scheme are discussed. Finally, the performed numerical simulations confirm the theoretical results, demonstrate fast convergence, and show the advantages of the adopted bent-ray model for sound propagation over the straight-ray model.


Sign in / Sign up

Export Citation Format

Share Document